Validation of associations for female fertility traits in Nordic Holstein, Nordic Red and Jersey dairy cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Johanna K Höglund, Goutam Sahana, Bernt Guldbrandtsen, Mogens S Lund

ABSTRACT

BACKGROUND: The results obtained from genome-wide association studies (GWAS) often show pronounced disagreements. Validation of association studies is therefore desired before marker information is incorporated in selection decisions. A reliable way to confirm a discovered association between genetic markers and phenotypes is to validate the results in different populations. Therefore, the objective of this study was to validate single nucleotide polymorphism (SNP) marker associations to female fertility traits identified in the Nordic Holstein (NH) cattle population in the Nordic Red (NR) and Jersey (JER) cattle breeds. In the present study, we used data from 3,475 NH sires which were genotyped with the BovineSNP50 Beadchip to discover associations between SNP markers and eight female fertility-related traits. The significant SNP markers were then tested in NR and JER cattle. RESULTS: A total of 4,474 significant associations between SNP markers and eight female fertility traits were detected in NH cattle. These significant associations were then validated in the NR (4,998 sires) and JER (1,225 sires) dairy cattle populations. We were able to validate 836 of the SNPs discovered in NH cattle in the NR population, as well as 686 SNPs in the JER population. 152 SNPs could be confirmed in both the NR and JER populations. CONCLUSIONS: The present study presents strong evidence for association of SNPs with fertility traits across three cattle breeds. We provide strong evidence that SNPs for many fertility traits are concentrated at certain areas on the genome (BTA1, BTA4, BTA7, BTA9, BTA11 and BTA13), and these areas would be highly suitable for further study in order to identify candidate genes for female fertility traits in dairy cattle. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2156-15-8

DOI

http://dx.doi.org/10.1186/1471-2156-15-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004306245

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24428918


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dairying", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fertility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swedish University of Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.6341.0", 
          "name": [
            "Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark", 
            "VikingGenetics, Ebeltoftvej 16, DK-8960, Assentoft, Randers S\u00d8, Denmark", 
            "Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6glund", 
        "givenName": "Johanna K", 
        "id": "sg:person.01203034260.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203034260.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahana", 
        "givenName": "Goutam", 
        "id": "sg:person.0727046246.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046246.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guldbrandtsen", 
        "givenName": "Bernt", 
        "id": "sg:person.0655324301.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655324301.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lund", 
        "givenName": "Mogens S", 
        "id": "sg:person.0740177106.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740177106.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng0508-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000802607", 
          "https://doi.org/10.1038/ng0508-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2007.00669.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000819859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02046.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001654004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02046.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001654004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2008.00744.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007044826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2010-3626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007630151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02149.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007781154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2007.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007808307", 
          "https://doi.org/10.1038/ng.2007.10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010221272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2009-2893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017394226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020552743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anireprosci.2011.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022117306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-4-r42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097093", 
          "https://doi.org/10.1186/gb-2009-10-4-r42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031437994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031437994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034530566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034530566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6023607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040514825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1195-241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040726560", 
          "https://doi.org/10.1038/ng1195-241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02148.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040759414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-35-1-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048420323", 
          "https://doi.org/10.1186/1297-9686-35-1-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050687320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(00)74942-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074633368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(05)72861-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077038452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(06)72406-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077281959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077663818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077890248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(83)81790-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081983994"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: The results obtained from genome-wide association studies (GWAS) often show pronounced disagreements. Validation of association studies is therefore desired before marker information is incorporated in selection decisions. A reliable way to confirm a discovered association between genetic markers and phenotypes is to validate the results in different populations. Therefore, the objective of this study was to validate single nucleotide polymorphism (SNP) marker associations to female fertility traits identified in the Nordic Holstein (NH) cattle population in the Nordic Red (NR) and Jersey (JER) cattle breeds. In the present study, we used data from 3,475 NH sires which were genotyped with the BovineSNP50 Beadchip to discover associations between SNP markers and eight female fertility-related traits. The significant SNP markers were then tested in NR and JER cattle.\nRESULTS: A total of 4,474 significant associations between SNP markers and eight female fertility traits were detected in NH cattle. These significant associations were then validated in the NR (4,998 sires) and JER (1,225 sires) dairy cattle populations. We were able to validate 836 of the SNPs discovered in NH cattle in the NR population, as well as 686 SNPs in the JER population. 152 SNPs could be confirmed in both the NR and JER populations.\nCONCLUSIONS: The present study presents strong evidence for association of SNPs with fertility traits across three cattle breeds. We provide strong evidence that SNPs for many fertility traits are concentrated at certain areas on the genome (BTA1, BTA4, BTA7, BTA9, BTA11 and BTA13), and these areas would be highly suitable for further study in order to identify candidate genes for female fertility traits in dairy cattle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2156-15-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Validation of associations for female fertility traits in Nordic Holstein, Nordic Red and Jersey dairy cattle", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1484bc63a005c37eecabb28d424bacb762461c85a22fc3d21130aa4a72a53b71"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24428918"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2156-15-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004306245"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2156-15-8", 
      "https://app.dimensions.ai/details/publication/pub.1004306245"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2156-15-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-8'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      71 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2156-15-8 schema:about N053d1566c29e4bcf911b0c9b01f8d15c
2 N400d1db5a7764f72b1b2bbd8aed964b5
3 N4215c092b9644de5b44c91a944a5f09a
4 N48e19e9e1b3848af9a15a6649555707d
5 N4da57e85fc8c4b3387c30c6d21ea9a8e
6 N5ff4e935fa0941e4a216f4fc1672d37c
7 N6301c664c9f640cbb42f89fe10f1a854
8 Nac972bf824ec4a059ba23eb2de63bb9a
9 Nad7fd990d87f48aab70c06bbf4fb6109
10 Nc562e6085fd54a79a8a30e95bc7a0c9d
11 Nd04700b5cbad4fbe89ed87a8fb745bd1
12 Ndfa7e9c493164ed49f4a3c95996a9171
13 Neae55d8e6a9e4eda80d5664dd2308729
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N2e04c0c0334a45aab7d26d0cd3bb49db
17 schema:citation sg:pub.10.1038/ng.2007.10
18 sg:pub.10.1038/ng.546
19 sg:pub.10.1038/ng0508-489
20 sg:pub.10.1038/ng1195-241
21 sg:pub.10.1038/ng1702
22 sg:pub.10.1186/1297-9686-35-1-77
23 sg:pub.10.1186/gb-2009-10-4-r42
24 https://doi.org/10.1002/gepi.20499
25 https://doi.org/10.1016/j.anireprosci.2011.06.011
26 https://doi.org/10.1093/bioinformatics/btm443
27 https://doi.org/10.1101/gr.6023607
28 https://doi.org/10.1111/j.0006-341x.1999.00997.x
29 https://doi.org/10.1111/j.1365-2052.2010.02046.x
30 https://doi.org/10.1111/j.1365-2052.2010.02064.x
31 https://doi.org/10.1111/j.1365-2052.2010.02148.x
32 https://doi.org/10.1111/j.1365-2052.2010.02149.x
33 https://doi.org/10.1111/j.1439-0388.2007.00669.x
34 https://doi.org/10.1111/j.1439-0388.2008.00744.x
35 https://doi.org/10.1126/science.1167936
36 https://doi.org/10.1371/journal.pone.0005350
37 https://doi.org/10.1534/genetics.107.084301
38 https://doi.org/10.3168/jds.2007-0585
39 https://doi.org/10.3168/jds.2008-1104
40 https://doi.org/10.3168/jds.2009-2893
41 https://doi.org/10.3168/jds.2010-3626
42 https://doi.org/10.3168/jds.s0022-0302(00)74942-3
43 https://doi.org/10.3168/jds.s0022-0302(05)72861-7
44 https://doi.org/10.3168/jds.s0022-0302(06)72406-7
45 https://doi.org/10.3168/jds.s0022-0302(83)81790-1
46 schema:datePublished 2014-12
47 schema:datePublishedReg 2014-12-01
48 schema:description BACKGROUND: The results obtained from genome-wide association studies (GWAS) often show pronounced disagreements. Validation of association studies is therefore desired before marker information is incorporated in selection decisions. A reliable way to confirm a discovered association between genetic markers and phenotypes is to validate the results in different populations. Therefore, the objective of this study was to validate single nucleotide polymorphism (SNP) marker associations to female fertility traits identified in the Nordic Holstein (NH) cattle population in the Nordic Red (NR) and Jersey (JER) cattle breeds. In the present study, we used data from 3,475 NH sires which were genotyped with the BovineSNP50 Beadchip to discover associations between SNP markers and eight female fertility-related traits. The significant SNP markers were then tested in NR and JER cattle. RESULTS: A total of 4,474 significant associations between SNP markers and eight female fertility traits were detected in NH cattle. These significant associations were then validated in the NR (4,998 sires) and JER (1,225 sires) dairy cattle populations. We were able to validate 836 of the SNPs discovered in NH cattle in the NR population, as well as 686 SNPs in the JER population. 152 SNPs could be confirmed in both the NR and JER populations. CONCLUSIONS: The present study presents strong evidence for association of SNPs with fertility traits across three cattle breeds. We provide strong evidence that SNPs for many fertility traits are concentrated at certain areas on the genome (BTA1, BTA4, BTA7, BTA9, BTA11 and BTA13), and these areas would be highly suitable for further study in order to identify candidate genes for female fertility traits in dairy cattle.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N3d22375e6686469793e9b7f0ee763a4e
53 Nacdf4b2fb19d47c89741bde0f64d464e
54 sg:journal.1024251
55 schema:name Validation of associations for female fertility traits in Nordic Holstein, Nordic Red and Jersey dairy cattle
56 schema:pagination 8
57 schema:productId N1b38bc6a63a94b96bbc538196e11c29b
58 N3091b7d8c65540f693e223210cc6dcca
59 N6b38848ab6734afb87d25b7a146a9c95
60 Nba7fabb931714db5a046cbe6197f2782
61 Nce603a44887e474381191d605c804aa7
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004306245
63 https://doi.org/10.1186/1471-2156-15-8
64 schema:sdDatePublished 2019-04-10T19:55
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N97619efef16d46149a19a2d2704ddd24
67 schema:url http://link.springer.com/10.1186%2F1471-2156-15-8
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N053d1566c29e4bcf911b0c9b01f8d15c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Sequence Analysis, DNA
73 rdf:type schema:DefinedTerm
74 N1b38bc6a63a94b96bbc538196e11c29b schema:name nlm_unique_id
75 schema:value 100966978
76 rdf:type schema:PropertyValue
77 N2e04c0c0334a45aab7d26d0cd3bb49db rdf:first sg:person.01203034260.48
78 rdf:rest N77b04ff505ee4ded9919c99c8e6a57b5
79 N3091b7d8c65540f693e223210cc6dcca schema:name doi
80 schema:value 10.1186/1471-2156-15-8
81 rdf:type schema:PropertyValue
82 N3d22375e6686469793e9b7f0ee763a4e schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N400d1db5a7764f72b1b2bbd8aed964b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Genetic Association Studies
86 rdf:type schema:DefinedTerm
87 N4215c092b9644de5b44c91a944a5f09a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Male
89 rdf:type schema:DefinedTerm
90 N48e19e9e1b3848af9a15a6649555707d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Animals
92 rdf:type schema:DefinedTerm
93 N4da57e85fc8c4b3387c30c6d21ea9a8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Breeding
95 rdf:type schema:DefinedTerm
96 N5ff4e935fa0941e4a216f4fc1672d37c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Cattle
98 rdf:type schema:DefinedTerm
99 N6301c664c9f640cbb42f89fe10f1a854 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Polymorphism, Single Nucleotide
101 rdf:type schema:DefinedTerm
102 N67d2c2366f434861a51a07417c521cdc rdf:first sg:person.0740177106.57
103 rdf:rest rdf:nil
104 N6b38848ab6734afb87d25b7a146a9c95 schema:name readcube_id
105 schema:value 1484bc63a005c37eecabb28d424bacb762461c85a22fc3d21130aa4a72a53b71
106 rdf:type schema:PropertyValue
107 N77b04ff505ee4ded9919c99c8e6a57b5 rdf:first sg:person.0727046246.31
108 rdf:rest Ne292520c741146d2bd66430dd6caadb4
109 N97619efef16d46149a19a2d2704ddd24 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nac972bf824ec4a059ba23eb2de63bb9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Genotype
113 rdf:type schema:DefinedTerm
114 Nacdf4b2fb19d47c89741bde0f64d464e schema:volumeNumber 15
115 rdf:type schema:PublicationVolume
116 Nad7fd990d87f48aab70c06bbf4fb6109 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Models, Genetic
118 rdf:type schema:DefinedTerm
119 Nba7fabb931714db5a046cbe6197f2782 schema:name pubmed_id
120 schema:value 24428918
121 rdf:type schema:PropertyValue
122 Nc562e6085fd54a79a8a30e95bc7a0c9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Female
124 rdf:type schema:DefinedTerm
125 Nce603a44887e474381191d605c804aa7 schema:name dimensions_id
126 schema:value pub.1004306245
127 rdf:type schema:PropertyValue
128 Nd04700b5cbad4fbe89ed87a8fb745bd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Semen
130 rdf:type schema:DefinedTerm
131 Ndfa7e9c493164ed49f4a3c95996a9171 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Fertility
133 rdf:type schema:DefinedTerm
134 Ne292520c741146d2bd66430dd6caadb4 rdf:first sg:person.0655324301.37
135 rdf:rest N67d2c2366f434861a51a07417c521cdc
136 Neae55d8e6a9e4eda80d5664dd2308729 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Dairying
138 rdf:type schema:DefinedTerm
139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biological Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
143 schema:name Genetics
144 rdf:type schema:DefinedTerm
145 sg:journal.1024251 schema:issn 1471-2156
146 schema:name BMC Genetics
147 rdf:type schema:Periodical
148 sg:person.01203034260.48 schema:affiliation https://www.grid.ac/institutes/grid.6341.0
149 schema:familyName Höglund
150 schema:givenName Johanna K
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203034260.48
152 rdf:type schema:Person
153 sg:person.0655324301.37 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
154 schema:familyName Guldbrandtsen
155 schema:givenName Bernt
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655324301.37
157 rdf:type schema:Person
158 sg:person.0727046246.31 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
159 schema:familyName Sahana
160 schema:givenName Goutam
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046246.31
162 rdf:type schema:Person
163 sg:person.0740177106.57 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
164 schema:familyName Lund
165 schema:givenName Mogens S
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740177106.57
167 rdf:type schema:Person
168 sg:pub.10.1038/ng.2007.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007808307
169 https://doi.org/10.1038/ng.2007.10
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ng.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017784241
172 https://doi.org/10.1038/ng.546
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ng0508-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802607
175 https://doi.org/10.1038/ng0508-489
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ng1195-241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040726560
178 https://doi.org/10.1038/ng1195-241
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
181 https://doi.org/10.1038/ng1702
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/1297-9686-35-1-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048420323
184 https://doi.org/10.1186/1297-9686-35-1-77
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/gb-2009-10-4-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097093
187 https://doi.org/10.1186/gb-2009-10-4-r42
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/gepi.20499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031437994
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.anireprosci.2011.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022117306
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btm443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050687320
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1101/gr.6023607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040514825
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1365-2052.2010.02046.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001654004
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1365-2052.2010.02064.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015623410
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1365-2052.2010.02148.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040759414
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1365-2052.2010.02149.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007781154
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1439-0388.2007.00669.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000819859
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1439-0388.2008.00744.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007044826
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.1167936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010221272
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1371/journal.pone.0005350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020552743
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1534/genetics.107.084301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034530566
216 rdf:type schema:CreativeWork
217 https://doi.org/10.3168/jds.2007-0585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077663818
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3168/jds.2008-1104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077890248
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3168/jds.2009-2893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017394226
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3168/jds.2010-3626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007630151
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3168/jds.s0022-0302(00)74942-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074633368
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3168/jds.s0022-0302(05)72861-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077038452
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3168/jds.s0022-0302(06)72406-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077281959
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3168/jds.s0022-0302(83)81790-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081983994
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.6341.0 schema:alternateName Swedish University of Agricultural Sciences
234 schema:name Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07, Uppsala, Sweden
235 Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark
236 VikingGenetics, Ebeltoftvej 16, DK-8960, Assentoft, Randers SØ, Denmark
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
239 schema:name Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...