Validation of associations for female fertility traits in Nordic Holstein, Nordic Red and Jersey dairy cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Johanna K Höglund, Goutam Sahana, Bernt Guldbrandtsen, Mogens S Lund

ABSTRACT

BACKGROUND: The results obtained from genome-wide association studies (GWAS) often show pronounced disagreements. Validation of association studies is therefore desired before marker information is incorporated in selection decisions. A reliable way to confirm a discovered association between genetic markers and phenotypes is to validate the results in different populations. Therefore, the objective of this study was to validate single nucleotide polymorphism (SNP) marker associations to female fertility traits identified in the Nordic Holstein (NH) cattle population in the Nordic Red (NR) and Jersey (JER) cattle breeds. In the present study, we used data from 3,475 NH sires which were genotyped with the BovineSNP50 Beadchip to discover associations between SNP markers and eight female fertility-related traits. The significant SNP markers were then tested in NR and JER cattle. RESULTS: A total of 4,474 significant associations between SNP markers and eight female fertility traits were detected in NH cattle. These significant associations were then validated in the NR (4,998 sires) and JER (1,225 sires) dairy cattle populations. We were able to validate 836 of the SNPs discovered in NH cattle in the NR population, as well as 686 SNPs in the JER population. 152 SNPs could be confirmed in both the NR and JER populations. CONCLUSIONS: The present study presents strong evidence for association of SNPs with fertility traits across three cattle breeds. We provide strong evidence that SNPs for many fertility traits are concentrated at certain areas on the genome (BTA1, BTA4, BTA7, BTA9, BTA11 and BTA13), and these areas would be highly suitable for further study in order to identify candidate genes for female fertility traits in dairy cattle. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2156-15-8

DOI

http://dx.doi.org/10.1186/1471-2156-15-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004306245

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24428918


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dairying", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fertility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swedish University of Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.6341.0", 
          "name": [
            "Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark", 
            "VikingGenetics, Ebeltoftvej 16, DK-8960, Assentoft, Randers S\u00d8, Denmark", 
            "Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6glund", 
        "givenName": "Johanna K", 
        "id": "sg:person.01203034260.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203034260.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahana", 
        "givenName": "Goutam", 
        "id": "sg:person.0727046246.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046246.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guldbrandtsen", 
        "givenName": "Bernt", 
        "id": "sg:person.0655324301.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655324301.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lund", 
        "givenName": "Mogens S", 
        "id": "sg:person.0740177106.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740177106.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng0508-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000802607", 
          "https://doi.org/10.1038/ng0508-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2007.00669.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000819859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02046.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001654004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02046.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001654004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2008.00744.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007044826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2010-3626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007630151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02149.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007781154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2007.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007808307", 
          "https://doi.org/10.1038/ng.2007.10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010221272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2009-2893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017394226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020552743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anireprosci.2011.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022117306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-4-r42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097093", 
          "https://doi.org/10.1186/gb-2009-10-4-r42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031437994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031437994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034530566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034530566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6023607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040514825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1195-241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040726560", 
          "https://doi.org/10.1038/ng1195-241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02148.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040759414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-35-1-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048420323", 
          "https://doi.org/10.1186/1297-9686-35-1-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050687320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(00)74942-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074633368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(05)72861-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077038452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(06)72406-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077281959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077663818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077890248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(83)81790-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081983994"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: The results obtained from genome-wide association studies (GWAS) often show pronounced disagreements. Validation of association studies is therefore desired before marker information is incorporated in selection decisions. A reliable way to confirm a discovered association between genetic markers and phenotypes is to validate the results in different populations. Therefore, the objective of this study was to validate single nucleotide polymorphism (SNP) marker associations to female fertility traits identified in the Nordic Holstein (NH) cattle population in the Nordic Red (NR) and Jersey (JER) cattle breeds. In the present study, we used data from 3,475 NH sires which were genotyped with the BovineSNP50 Beadchip to discover associations between SNP markers and eight female fertility-related traits. The significant SNP markers were then tested in NR and JER cattle.\nRESULTS: A total of 4,474 significant associations between SNP markers and eight female fertility traits were detected in NH cattle. These significant associations were then validated in the NR (4,998 sires) and JER (1,225 sires) dairy cattle populations. We were able to validate 836 of the SNPs discovered in NH cattle in the NR population, as well as 686 SNPs in the JER population. 152 SNPs could be confirmed in both the NR and JER populations.\nCONCLUSIONS: The present study presents strong evidence for association of SNPs with fertility traits across three cattle breeds. We provide strong evidence that SNPs for many fertility traits are concentrated at certain areas on the genome (BTA1, BTA4, BTA7, BTA9, BTA11 and BTA13), and these areas would be highly suitable for further study in order to identify candidate genes for female fertility traits in dairy cattle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2156-15-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Validation of associations for female fertility traits in Nordic Holstein, Nordic Red and Jersey dairy cattle", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1484bc63a005c37eecabb28d424bacb762461c85a22fc3d21130aa4a72a53b71"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24428918"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2156-15-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004306245"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2156-15-8", 
      "https://app.dimensions.ai/details/publication/pub.1004306245"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2156-15-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-15-8'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      71 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2156-15-8 schema:about N0f5ba2d42131468583fcbe63df56802e
2 N1e2d96c591694f5095d638cefbf2e607
3 N24f82d995f154497b45fc6b675fffea8
4 N3734373a8a104ee8a71a7d6fc9fbaf2f
5 N481193bd148442718fee8d120ed61a99
6 N6043088d4eba487bbc06e19dd9f5306b
7 N936c4cb736d5493ba3fb91c51ba93ea2
8 N9af8d20f1d004c30ba8bdc4cfce8f64d
9 Na71f9ea43dd74bfcb259118c2e846130
10 Nc844ea38aecd43f8bd4774b91d4723c9
11 Ncd932ecdf87148b8a6577b1f5a532bf7
12 Ncdac4f824b224451898fc8128fe7c4c5
13 Nd22f83381714441a815a72727c6492d7
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N371fab4eb8824c9696a05a44427fa9d5
17 schema:citation sg:pub.10.1038/ng.2007.10
18 sg:pub.10.1038/ng.546
19 sg:pub.10.1038/ng0508-489
20 sg:pub.10.1038/ng1195-241
21 sg:pub.10.1038/ng1702
22 sg:pub.10.1186/1297-9686-35-1-77
23 sg:pub.10.1186/gb-2009-10-4-r42
24 https://doi.org/10.1002/gepi.20499
25 https://doi.org/10.1016/j.anireprosci.2011.06.011
26 https://doi.org/10.1093/bioinformatics/btm443
27 https://doi.org/10.1101/gr.6023607
28 https://doi.org/10.1111/j.0006-341x.1999.00997.x
29 https://doi.org/10.1111/j.1365-2052.2010.02046.x
30 https://doi.org/10.1111/j.1365-2052.2010.02064.x
31 https://doi.org/10.1111/j.1365-2052.2010.02148.x
32 https://doi.org/10.1111/j.1365-2052.2010.02149.x
33 https://doi.org/10.1111/j.1439-0388.2007.00669.x
34 https://doi.org/10.1111/j.1439-0388.2008.00744.x
35 https://doi.org/10.1126/science.1167936
36 https://doi.org/10.1371/journal.pone.0005350
37 https://doi.org/10.1534/genetics.107.084301
38 https://doi.org/10.3168/jds.2007-0585
39 https://doi.org/10.3168/jds.2008-1104
40 https://doi.org/10.3168/jds.2009-2893
41 https://doi.org/10.3168/jds.2010-3626
42 https://doi.org/10.3168/jds.s0022-0302(00)74942-3
43 https://doi.org/10.3168/jds.s0022-0302(05)72861-7
44 https://doi.org/10.3168/jds.s0022-0302(06)72406-7
45 https://doi.org/10.3168/jds.s0022-0302(83)81790-1
46 schema:datePublished 2014-12
47 schema:datePublishedReg 2014-12-01
48 schema:description BACKGROUND: The results obtained from genome-wide association studies (GWAS) often show pronounced disagreements. Validation of association studies is therefore desired before marker information is incorporated in selection decisions. A reliable way to confirm a discovered association between genetic markers and phenotypes is to validate the results in different populations. Therefore, the objective of this study was to validate single nucleotide polymorphism (SNP) marker associations to female fertility traits identified in the Nordic Holstein (NH) cattle population in the Nordic Red (NR) and Jersey (JER) cattle breeds. In the present study, we used data from 3,475 NH sires which were genotyped with the BovineSNP50 Beadchip to discover associations between SNP markers and eight female fertility-related traits. The significant SNP markers were then tested in NR and JER cattle. RESULTS: A total of 4,474 significant associations between SNP markers and eight female fertility traits were detected in NH cattle. These significant associations were then validated in the NR (4,998 sires) and JER (1,225 sires) dairy cattle populations. We were able to validate 836 of the SNPs discovered in NH cattle in the NR population, as well as 686 SNPs in the JER population. 152 SNPs could be confirmed in both the NR and JER populations. CONCLUSIONS: The present study presents strong evidence for association of SNPs with fertility traits across three cattle breeds. We provide strong evidence that SNPs for many fertility traits are concentrated at certain areas on the genome (BTA1, BTA4, BTA7, BTA9, BTA11 and BTA13), and these areas would be highly suitable for further study in order to identify candidate genes for female fertility traits in dairy cattle.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N46fc07faf4d947b19bdbe1cf1415b5b1
53 N58667b643c164c25846d9abf6a0803b2
54 sg:journal.1024251
55 schema:name Validation of associations for female fertility traits in Nordic Holstein, Nordic Red and Jersey dairy cattle
56 schema:pagination 8
57 schema:productId N08b6718ae03b48508105b4558beca91f
58 N0ca67fefaea3467583b993c753bac9f1
59 N2345341aae914da39e01fb5bf7aa64e7
60 N5c79c9530eac4591ba8049fb1f9b448e
61 N5d0314e526574c18b4e892f91ef53a5d
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004306245
63 https://doi.org/10.1186/1471-2156-15-8
64 schema:sdDatePublished 2019-04-10T19:55
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N9a71d6c244b340e689c5a97b36e2b05d
67 schema:url http://link.springer.com/10.1186%2F1471-2156-15-8
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N04c59344c1b54ada9f1eb337728fb043 rdf:first sg:person.0740177106.57
72 rdf:rest rdf:nil
73 N08b6718ae03b48508105b4558beca91f schema:name doi
74 schema:value 10.1186/1471-2156-15-8
75 rdf:type schema:PropertyValue
76 N0ca67fefaea3467583b993c753bac9f1 schema:name readcube_id
77 schema:value 1484bc63a005c37eecabb28d424bacb762461c85a22fc3d21130aa4a72a53b71
78 rdf:type schema:PropertyValue
79 N0f5ba2d42131468583fcbe63df56802e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Genetic Association Studies
81 rdf:type schema:DefinedTerm
82 N1e2d96c591694f5095d638cefbf2e607 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Fertility
84 rdf:type schema:DefinedTerm
85 N203dfd5591de48148b66bed48cc9be10 rdf:first sg:person.0727046246.31
86 rdf:rest N905820dbbccd4acead4368e9b215739a
87 N2345341aae914da39e01fb5bf7aa64e7 schema:name pubmed_id
88 schema:value 24428918
89 rdf:type schema:PropertyValue
90 N24f82d995f154497b45fc6b675fffea8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Dairying
92 rdf:type schema:DefinedTerm
93 N371fab4eb8824c9696a05a44427fa9d5 rdf:first sg:person.01203034260.48
94 rdf:rest N203dfd5591de48148b66bed48cc9be10
95 N3734373a8a104ee8a71a7d6fc9fbaf2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Polymorphism, Single Nucleotide
97 rdf:type schema:DefinedTerm
98 N46fc07faf4d947b19bdbe1cf1415b5b1 schema:volumeNumber 15
99 rdf:type schema:PublicationVolume
100 N481193bd148442718fee8d120ed61a99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Genotype
102 rdf:type schema:DefinedTerm
103 N58667b643c164c25846d9abf6a0803b2 schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 N5c79c9530eac4591ba8049fb1f9b448e schema:name dimensions_id
106 schema:value pub.1004306245
107 rdf:type schema:PropertyValue
108 N5d0314e526574c18b4e892f91ef53a5d schema:name nlm_unique_id
109 schema:value 100966978
110 rdf:type schema:PropertyValue
111 N6043088d4eba487bbc06e19dd9f5306b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Animals
113 rdf:type schema:DefinedTerm
114 N905820dbbccd4acead4368e9b215739a rdf:first sg:person.0655324301.37
115 rdf:rest N04c59344c1b54ada9f1eb337728fb043
116 N936c4cb736d5493ba3fb91c51ba93ea2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Female
118 rdf:type schema:DefinedTerm
119 N9a71d6c244b340e689c5a97b36e2b05d schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N9af8d20f1d004c30ba8bdc4cfce8f64d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Male
123 rdf:type schema:DefinedTerm
124 Na71f9ea43dd74bfcb259118c2e846130 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Sequence Analysis, DNA
126 rdf:type schema:DefinedTerm
127 Nc844ea38aecd43f8bd4774b91d4723c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Cattle
129 rdf:type schema:DefinedTerm
130 Ncd932ecdf87148b8a6577b1f5a532bf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Breeding
132 rdf:type schema:DefinedTerm
133 Ncdac4f824b224451898fc8128fe7c4c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Models, Genetic
135 rdf:type schema:DefinedTerm
136 Nd22f83381714441a815a72727c6492d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Semen
138 rdf:type schema:DefinedTerm
139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biological Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
143 schema:name Genetics
144 rdf:type schema:DefinedTerm
145 sg:journal.1024251 schema:issn 1471-2156
146 schema:name BMC Genetics
147 rdf:type schema:Periodical
148 sg:person.01203034260.48 schema:affiliation https://www.grid.ac/institutes/grid.6341.0
149 schema:familyName Höglund
150 schema:givenName Johanna K
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203034260.48
152 rdf:type schema:Person
153 sg:person.0655324301.37 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
154 schema:familyName Guldbrandtsen
155 schema:givenName Bernt
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655324301.37
157 rdf:type schema:Person
158 sg:person.0727046246.31 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
159 schema:familyName Sahana
160 schema:givenName Goutam
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046246.31
162 rdf:type schema:Person
163 sg:person.0740177106.57 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
164 schema:familyName Lund
165 schema:givenName Mogens S
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740177106.57
167 rdf:type schema:Person
168 sg:pub.10.1038/ng.2007.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007808307
169 https://doi.org/10.1038/ng.2007.10
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ng.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017784241
172 https://doi.org/10.1038/ng.546
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ng0508-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802607
175 https://doi.org/10.1038/ng0508-489
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ng1195-241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040726560
178 https://doi.org/10.1038/ng1195-241
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
181 https://doi.org/10.1038/ng1702
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/1297-9686-35-1-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048420323
184 https://doi.org/10.1186/1297-9686-35-1-77
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/gb-2009-10-4-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097093
187 https://doi.org/10.1186/gb-2009-10-4-r42
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/gepi.20499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031437994
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.anireprosci.2011.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022117306
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btm443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050687320
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1101/gr.6023607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040514825
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1365-2052.2010.02046.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001654004
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1365-2052.2010.02064.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015623410
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1365-2052.2010.02148.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040759414
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1365-2052.2010.02149.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007781154
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1439-0388.2007.00669.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000819859
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1439-0388.2008.00744.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007044826
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.1167936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010221272
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1371/journal.pone.0005350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020552743
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1534/genetics.107.084301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034530566
216 rdf:type schema:CreativeWork
217 https://doi.org/10.3168/jds.2007-0585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077663818
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3168/jds.2008-1104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077890248
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3168/jds.2009-2893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017394226
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3168/jds.2010-3626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007630151
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3168/jds.s0022-0302(00)74942-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074633368
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3168/jds.s0022-0302(05)72861-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077038452
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3168/jds.s0022-0302(06)72406-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077281959
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3168/jds.s0022-0302(83)81790-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081983994
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.6341.0 schema:alternateName Swedish University of Agricultural Sciences
234 schema:name Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07, Uppsala, Sweden
235 Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark
236 VikingGenetics, Ebeltoftvej 16, DK-8960, Assentoft, Randers SØ, Denmark
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
239 schema:name Faculty of Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...