Genome-wide association of milk fatty acids in Dutch dairy cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Aniek C Bouwman, Henk Bovenhuis, Marleen HPW Visker, Johan AM van Arendonk

ABSTRACT

BACKGROUND: Identifying genomic regions, and preferably individual genes, responsible for genetic variation in milk fat composition of bovine milk will enhance the understanding of biological pathways involved in fatty acid synthesis and may point to opportunities for changing milk fat composition via selective breeding. An association study of 50,000 single nucleotide polymorphisms (SNPs) was performed for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to identify genomic regions associated with individual fatty acids in bovine milk. RESULTS: The two-step single SNP association analysis found a total of 54 regions on 29 chromosomes that were significantly associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with seven to ten traits, explaining a relatively large percentage of the total additive genetic variation. Many additional regions were significantly associated with the fatty acids. Some of the regions harbor genes that are known to be involved in fat synthesis or were previously identified as underlying quantitative trait loci for fat yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and AGPAT6 on BTA 27. CONCLUSIONS: Medium chain and unsaturated fatty acids are strongly influenced by polymorphisms in DGAT1 and SCD1. Other regions also showed significant associations with the fatty acids studied. These additional regions explain a relatively small percentage of the total additive genetic variance, but they are relevant to the total genetic merit of an individual and in unraveling the genetic background of milk fat composition. Regions identified in this study can be fine mapped to find causal mutations. The results also create opportunities for changing milk fat composition through breeding by selecting individuals based on their genetic merit for milk fat composition. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2156-12-43

DOI

http://dx.doi.org/10.1186/1471-2156-12-43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047167143

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21569316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, Gas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diacylglycerol O-Acyltransferase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Milk", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Netherlands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stearoyl-CoA Desaturase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouwman", 
        "givenName": "Aniek C", 
        "id": "sg:person.01323605530.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323605530.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bovenhuis", 
        "givenName": "Henk", 
        "id": "sg:person.01145703356.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145703356.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visker", 
        "givenName": "Marleen HPW", 
        "id": "sg:person.011470534067.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470534067.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Arendonk", 
        "givenName": "Johan AM", 
        "id": "sg:person.014772210737.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772210737.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.224202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005941767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120907", 
          "https://doi.org/10.1186/1471-2164-10-180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007752837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-3278(02)00259-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009672714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-3278(02)00259-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009672714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-003-2286-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011417847", 
          "https://doi.org/10.1007/s00335-003-2286-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02058.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013179589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02058.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013179589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2009-2893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017394226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-8-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017702520", 
          "https://doi.org/10.1186/1471-2156-8-32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2009-2581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020073557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00103.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022592457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-4-r42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097093", 
          "https://doi.org/10.1186/gb-2009-10-4-r42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m500553-jlr200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030603499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031802297", 
          "https://doi.org/10.1186/1471-2164-9-366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2009.01940.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032415155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2007.01635.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034406634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034750111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3806705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035976635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1530509100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044620917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2008.00796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049899408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2008.00796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049899408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-006-0102-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050061181", 
          "https://doi.org/10.1007/s00335-006-0102-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-006-0102-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050061181", 
          "https://doi.org/10.1007/s00335-006-0102-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2007.01643.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051049911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051461847", 
          "https://doi.org/10.1038/nrg2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051461847", 
          "https://doi.org/10.1038/nrg2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02088.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051994576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1992.7072000x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070878720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2007-0676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070886321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2009-2713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070887292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(02)74079-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075020463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077421294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077421294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077421294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077434517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077537171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077636649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077636649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077636649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077679330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077828887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077933292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077948289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077948290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083023520", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Identifying genomic regions, and preferably individual genes, responsible for genetic variation in milk fat composition of bovine milk will enhance the understanding of biological pathways involved in fatty acid synthesis and may point to opportunities for changing milk fat composition via selective breeding. An association study of 50,000 single nucleotide polymorphisms (SNPs) was performed for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to identify genomic regions associated with individual fatty acids in bovine milk.\nRESULTS: The two-step single SNP association analysis found a total of 54 regions on 29 chromosomes that were significantly associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with seven to ten traits, explaining a relatively large percentage of the total additive genetic variation. Many additional regions were significantly associated with the fatty acids. Some of the regions harbor genes that are known to be involved in fat synthesis or were previously identified as underlying quantitative trait loci for fat yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and AGPAT6 on BTA 27.\nCONCLUSIONS: Medium chain and unsaturated fatty acids are strongly influenced by polymorphisms in DGAT1 and SCD1. Other regions also showed significant associations with the fatty acids studied. These additional regions explain a relatively small percentage of the total additive genetic variance, but they are relevant to the total genetic merit of an individual and in unraveling the genetic background of milk fat composition. Regions identified in this study can be fine mapped to find causal mutations. The results also create opportunities for changing milk fat composition through breeding by selecting individuals based on their genetic merit for milk fat composition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2156-12-43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Genome-wide association of milk fatty acids in Dutch dairy cattle", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0b00c6f3fb12cceefee35cbdbf8f50c9731777af461ccd57425016eb3b70c07"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21569316"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2156-12-43"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047167143"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2156-12-43", 
      "https://app.dimensions.ai/details/publication/pub.1047167143"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2156-12-43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-12-43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-12-43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-12-43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-12-43'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      82 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2156-12-43 schema:about N00a6edbffb624c8ca842819a11dc7161
2 N130911efa45c4f739927070510fd69a4
3 N50e6412de60449a688464bf393a71b85
4 N557bb503e30a41b58f2e6f3644d3ad15
5 N5b5f7b09d7f147a1953e38edb3ae29de
6 N63f16cf0aac74e35bd3d00072a4b7105
7 N64afff9d6c3246c099e45757f6c271e8
8 N65ec687cb174428aa261b4cc8e902d7e
9 N6b6f9918f0db4acbad12a1886bcc7f92
10 N7293bfa2352a45cbb3a2ca17a2afdee0
11 N7f20d6a8c610493bba08974a0ea90fd6
12 N87f5b5cfcc684af6be28279a3b14eb6a
13 Nab39e7f53e8245ca84e94721e899c8a5
14 Nd871b83593764961828e9f8198db48ec
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author N25360c6d0b71421ab53b5070201bda7b
18 schema:citation sg:pub.10.1007/s00335-003-2286-8
19 sg:pub.10.1007/s00335-006-0102-y
20 sg:pub.10.1038/nrg2575
21 sg:pub.10.1186/1471-2156-8-32
22 sg:pub.10.1186/1471-2164-10-180
23 sg:pub.10.1186/1471-2164-9-366
24 sg:pub.10.1186/gb-2009-10-4-r42
25 https://app.dimensions.ai/details/publication/pub.1083023520
26 https://doi.org/10.1016/s0952-3278(02)00259-4
27 https://doi.org/10.1073/pnas.1530509100
28 https://doi.org/10.1093/bioinformatics/btl675
29 https://doi.org/10.1093/bioinformatics/btm025
30 https://doi.org/10.1101/gr.224202
31 https://doi.org/10.1101/gr.3806705
32 https://doi.org/10.1111/j.1365-2052.2007.01635.x
33 https://doi.org/10.1111/j.1365-2052.2007.01643.x
34 https://doi.org/10.1111/j.1365-2052.2009.01940.x
35 https://doi.org/10.1111/j.1365-2052.2010.02058.x
36 https://doi.org/10.1111/j.1365-2052.2010.02088.x
37 https://doi.org/10.1111/j.1439-0388.2008.00796.x
38 https://doi.org/10.1152/physiolgenomics.00103.2004
39 https://doi.org/10.1194/jlr.m500553-jlr200
40 https://doi.org/10.2527/1992.7072000x
41 https://doi.org/10.2527/jas.2007-0676
42 https://doi.org/10.2527/jas.2009-2713
43 https://doi.org/10.3168/jds.2006-617
44 https://doi.org/10.3168/jds.2006-812
45 https://doi.org/10.3168/jds.2006-855
46 https://doi.org/10.3168/jds.2007-0054
47 https://doi.org/10.3168/jds.2007-0181
48 https://doi.org/10.3168/jds.2007-0333
49 https://doi.org/10.3168/jds.2007-0825
50 https://doi.org/10.3168/jds.2008-1445
51 https://doi.org/10.3168/jds.2008-1484
52 https://doi.org/10.3168/jds.2008-1965
53 https://doi.org/10.3168/jds.2008-1966
54 https://doi.org/10.3168/jds.2009-2581
55 https://doi.org/10.3168/jds.2009-2893
56 https://doi.org/10.3168/jds.s0022-0302(02)74079-4
57 schema:datePublished 2011-12
58 schema:datePublishedReg 2011-12-01
59 schema:description BACKGROUND: Identifying genomic regions, and preferably individual genes, responsible for genetic variation in milk fat composition of bovine milk will enhance the understanding of biological pathways involved in fatty acid synthesis and may point to opportunities for changing milk fat composition via selective breeding. An association study of 50,000 single nucleotide polymorphisms (SNPs) was performed for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to identify genomic regions associated with individual fatty acids in bovine milk. RESULTS: The two-step single SNP association analysis found a total of 54 regions on 29 chromosomes that were significantly associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with seven to ten traits, explaining a relatively large percentage of the total additive genetic variation. Many additional regions were significantly associated with the fatty acids. Some of the regions harbor genes that are known to be involved in fat synthesis or were previously identified as underlying quantitative trait loci for fat yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and AGPAT6 on BTA 27. CONCLUSIONS: Medium chain and unsaturated fatty acids are strongly influenced by polymorphisms in DGAT1 and SCD1. Other regions also showed significant associations with the fatty acids studied. These additional regions explain a relatively small percentage of the total additive genetic variance, but they are relevant to the total genetic merit of an individual and in unraveling the genetic background of milk fat composition. Regions identified in this study can be fine mapped to find causal mutations. The results also create opportunities for changing milk fat composition through breeding by selecting individuals based on their genetic merit for milk fat composition.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree true
63 schema:isPartOf N3a3bfc1dc9b14c849db73dcce9215900
64 N63245b1767014520b2d1e2c16fd1fd6b
65 sg:journal.1024251
66 schema:name Genome-wide association of milk fatty acids in Dutch dairy cattle
67 schema:pagination 43
68 schema:productId N44254091a4d3406aa5551bcc530ef6fb
69 Na457a89dfc424665946f0818b801b5b2
70 Nb674c4696d89401a9c7821f4ccd26c02
71 Nc9bc5e48d409431a85d9edf04bb6fc2f
72 Neea65bb19e7f4e87b58b25d870c545a8
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047167143
74 https://doi.org/10.1186/1471-2156-12-43
75 schema:sdDatePublished 2019-04-10T15:50
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N78852d77b35d42f19a5e13dfa962b023
78 schema:url http://link.springer.com/10.1186%2F1471-2156-12-43
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N00a6edbffb624c8ca842819a11dc7161 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Stearoyl-CoA Desaturase
84 rdf:type schema:DefinedTerm
85 N130911efa45c4f739927070510fd69a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Female
87 rdf:type schema:DefinedTerm
88 N25360c6d0b71421ab53b5070201bda7b rdf:first sg:person.01323605530.55
89 rdf:rest Nb71978ff7f944177961ae4779f21ded1
90 N3a3bfc1dc9b14c849db73dcce9215900 schema:volumeNumber 12
91 rdf:type schema:PublicationVolume
92 N44254091a4d3406aa5551bcc530ef6fb schema:name readcube_id
93 schema:value e0b00c6f3fb12cceefee35cbdbf8f50c9731777af461ccd57425016eb3b70c07
94 rdf:type schema:PropertyValue
95 N50e6412de60449a688464bf393a71b85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Quantitative Trait Loci
97 rdf:type schema:DefinedTerm
98 N557bb503e30a41b58f2e6f3644d3ad15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Chromatography, Gas
100 rdf:type schema:DefinedTerm
101 N5b5f7b09d7f147a1953e38edb3ae29de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Phenotype
103 rdf:type schema:DefinedTerm
104 N63245b1767014520b2d1e2c16fd1fd6b schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N63f16cf0aac74e35bd3d00072a4b7105 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Lactation
108 rdf:type schema:DefinedTerm
109 N64afff9d6c3246c099e45757f6c271e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Genotype
111 rdf:type schema:DefinedTerm
112 N65ec687cb174428aa261b4cc8e902d7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Cattle
114 rdf:type schema:DefinedTerm
115 N6b6f9918f0db4acbad12a1886bcc7f92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Netherlands
117 rdf:type schema:DefinedTerm
118 N7293bfa2352a45cbb3a2ca17a2afdee0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Fatty Acids
120 rdf:type schema:DefinedTerm
121 N78852d77b35d42f19a5e13dfa962b023 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N7f20d6a8c610493bba08974a0ea90fd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Milk
125 rdf:type schema:DefinedTerm
126 N87f5b5cfcc684af6be28279a3b14eb6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Animals
128 rdf:type schema:DefinedTerm
129 Na457a89dfc424665946f0818b801b5b2 schema:name pubmed_id
130 schema:value 21569316
131 rdf:type schema:PropertyValue
132 Na6452a9d315147759beb0bcefdb026bb rdf:first sg:person.014772210737.08
133 rdf:rest rdf:nil
134 Nab39e7f53e8245ca84e94721e899c8a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Polymorphism, Single Nucleotide
136 rdf:type schema:DefinedTerm
137 Nb674c4696d89401a9c7821f4ccd26c02 schema:name doi
138 schema:value 10.1186/1471-2156-12-43
139 rdf:type schema:PropertyValue
140 Nb71978ff7f944177961ae4779f21ded1 rdf:first sg:person.01145703356.63
141 rdf:rest Ne1b7af190653408285a9aa872fd34832
142 Nc9bc5e48d409431a85d9edf04bb6fc2f schema:name dimensions_id
143 schema:value pub.1047167143
144 rdf:type schema:PropertyValue
145 Nd871b83593764961828e9f8198db48ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Diacylglycerol O-Acyltransferase
147 rdf:type schema:DefinedTerm
148 Ne1b7af190653408285a9aa872fd34832 rdf:first sg:person.011470534067.05
149 rdf:rest Na6452a9d315147759beb0bcefdb026bb
150 Neea65bb19e7f4e87b58b25d870c545a8 schema:name nlm_unique_id
151 schema:value 100966978
152 rdf:type schema:PropertyValue
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
157 schema:name Genetics
158 rdf:type schema:DefinedTerm
159 sg:journal.1024251 schema:issn 1471-2156
160 schema:name BMC Genetics
161 rdf:type schema:Periodical
162 sg:person.01145703356.63 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
163 schema:familyName Bovenhuis
164 schema:givenName Henk
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145703356.63
166 rdf:type schema:Person
167 sg:person.011470534067.05 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
168 schema:familyName Visker
169 schema:givenName Marleen HPW
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470534067.05
171 rdf:type schema:Person
172 sg:person.01323605530.55 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
173 schema:familyName Bouwman
174 schema:givenName Aniek C
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323605530.55
176 rdf:type schema:Person
177 sg:person.014772210737.08 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
178 schema:familyName van Arendonk
179 schema:givenName Johan AM
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772210737.08
181 rdf:type schema:Person
182 sg:pub.10.1007/s00335-003-2286-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011417847
183 https://doi.org/10.1007/s00335-003-2286-8
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00335-006-0102-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061181
186 https://doi.org/10.1007/s00335-006-0102-y
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nrg2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051461847
189 https://doi.org/10.1038/nrg2575
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2156-8-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017702520
192 https://doi.org/10.1186/1471-2156-8-32
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2164-10-180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006120907
195 https://doi.org/10.1186/1471-2164-10-180
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2164-9-366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031802297
198 https://doi.org/10.1186/1471-2164-9-366
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/gb-2009-10-4-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097093
201 https://doi.org/10.1186/gb-2009-10-4-r42
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1083023520 schema:CreativeWork
204 https://doi.org/10.1016/s0952-3278(02)00259-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009672714
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/btl675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007752837
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bioinformatics/btm025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034750111
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1101/gr.224202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005941767
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1101/gr.3806705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035976635
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/j.1365-2052.2007.01635.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034406634
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1365-2052.2007.01643.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051049911
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1111/j.1365-2052.2009.01940.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032415155
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1111/j.1365-2052.2010.02058.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013179589
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/j.1365-2052.2010.02088.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051994576
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/j.1439-0388.2008.00796.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049899408
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1152/physiolgenomics.00103.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022592457
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1194/jlr.m500553-jlr200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030603499
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2527/1992.7072000x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070878720
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2527/jas.2007-0676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070886321
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2527/jas.2009-2713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887292
237 rdf:type schema:CreativeWork
238 https://doi.org/10.3168/jds.2006-617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077464007
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3168/jds.2006-812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077421294
241 rdf:type schema:CreativeWork
242 https://doi.org/10.3168/jds.2006-855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077434517
243 rdf:type schema:CreativeWork
244 https://doi.org/10.3168/jds.2007-0054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077464004
245 rdf:type schema:CreativeWork
246 https://doi.org/10.3168/jds.2007-0181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077537171
247 rdf:type schema:CreativeWork
248 https://doi.org/10.3168/jds.2007-0333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077679330
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3168/jds.2007-0825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077636649
251 rdf:type schema:CreativeWork
252 https://doi.org/10.3168/jds.2008-1445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077828887
253 rdf:type schema:CreativeWork
254 https://doi.org/10.3168/jds.2008-1484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077933292
255 rdf:type schema:CreativeWork
256 https://doi.org/10.3168/jds.2008-1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077948290
257 rdf:type schema:CreativeWork
258 https://doi.org/10.3168/jds.2008-1966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077948289
259 rdf:type schema:CreativeWork
260 https://doi.org/10.3168/jds.2009-2581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020073557
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3168/jds.2009-2893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017394226
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3168/jds.s0022-0302(02)74079-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075020463
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
267 schema:name Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...