Genome-wide association of milk fatty acids in Dutch dairy cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Aniek C Bouwman, Henk Bovenhuis, Marleen HPW Visker, Johan AM van Arendonk

ABSTRACT

BACKGROUND: Identifying genomic regions, and preferably individual genes, responsible for genetic variation in milk fat composition of bovine milk will enhance the understanding of biological pathways involved in fatty acid synthesis and may point to opportunities for changing milk fat composition via selective breeding. An association study of 50,000 single nucleotide polymorphisms (SNPs) was performed for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to identify genomic regions associated with individual fatty acids in bovine milk. RESULTS: The two-step single SNP association analysis found a total of 54 regions on 29 chromosomes that were significantly associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with seven to ten traits, explaining a relatively large percentage of the total additive genetic variation. Many additional regions were significantly associated with the fatty acids. Some of the regions harbor genes that are known to be involved in fat synthesis or were previously identified as underlying quantitative trait loci for fat yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and AGPAT6 on BTA 27. CONCLUSIONS: Medium chain and unsaturated fatty acids are strongly influenced by polymorphisms in DGAT1 and SCD1. Other regions also showed significant associations with the fatty acids studied. These additional regions explain a relatively small percentage of the total additive genetic variance, but they are relevant to the total genetic merit of an individual and in unraveling the genetic background of milk fat composition. Regions identified in this study can be fine mapped to find causal mutations. The results also create opportunities for changing milk fat composition through breeding by selecting individuals based on their genetic merit for milk fat composition. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2156-12-43

DOI

http://dx.doi.org/10.1186/1471-2156-12-43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047167143

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21569316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, Gas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diacylglycerol O-Acyltransferase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Milk", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Netherlands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stearoyl-CoA Desaturase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouwman", 
        "givenName": "Aniek C", 
        "id": "sg:person.01323605530.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323605530.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bovenhuis", 
        "givenName": "Henk", 
        "id": "sg:person.01145703356.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145703356.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visker", 
        "givenName": "Marleen HPW", 
        "id": "sg:person.011470534067.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470534067.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Arendonk", 
        "givenName": "Johan AM", 
        "id": "sg:person.014772210737.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772210737.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.224202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005941767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120907", 
          "https://doi.org/10.1186/1471-2164-10-180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007752837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-3278(02)00259-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009672714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-3278(02)00259-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009672714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-003-2286-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011417847", 
          "https://doi.org/10.1007/s00335-003-2286-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02058.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013179589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02058.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013179589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2009-2893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017394226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-8-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017702520", 
          "https://doi.org/10.1186/1471-2156-8-32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2009-2581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020073557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00103.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022592457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-4-r42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097093", 
          "https://doi.org/10.1186/gb-2009-10-4-r42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m500553-jlr200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030603499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031802297", 
          "https://doi.org/10.1186/1471-2164-9-366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2009.01940.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032415155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2007.01635.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034406634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034750111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3806705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035976635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1530509100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044620917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2008.00796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049899408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2008.00796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049899408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-006-0102-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050061181", 
          "https://doi.org/10.1007/s00335-006-0102-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-006-0102-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050061181", 
          "https://doi.org/10.1007/s00335-006-0102-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2007.01643.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051049911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051461847", 
          "https://doi.org/10.1038/nrg2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051461847", 
          "https://doi.org/10.1038/nrg2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02088.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051994576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1992.7072000x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070878720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2007-0676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070886321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2009-2713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070887292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(02)74079-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075020463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077421294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077421294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077421294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077434517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2006-617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077464007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077537171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077636649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077636649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077636649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077679330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077828887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077933292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077948289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077948290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083023520", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Identifying genomic regions, and preferably individual genes, responsible for genetic variation in milk fat composition of bovine milk will enhance the understanding of biological pathways involved in fatty acid synthesis and may point to opportunities for changing milk fat composition via selective breeding. An association study of 50,000 single nucleotide polymorphisms (SNPs) was performed for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to identify genomic regions associated with individual fatty acids in bovine milk.\nRESULTS: The two-step single SNP association analysis found a total of 54 regions on 29 chromosomes that were significantly associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with seven to ten traits, explaining a relatively large percentage of the total additive genetic variation. Many additional regions were significantly associated with the fatty acids. Some of the regions harbor genes that are known to be involved in fat synthesis or were previously identified as underlying quantitative trait loci for fat yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and AGPAT6 on BTA 27.\nCONCLUSIONS: Medium chain and unsaturated fatty acids are strongly influenced by polymorphisms in DGAT1 and SCD1. Other regions also showed significant associations with the fatty acids studied. These additional regions explain a relatively small percentage of the total additive genetic variance, but they are relevant to the total genetic merit of an individual and in unraveling the genetic background of milk fat composition. Regions identified in this study can be fine mapped to find causal mutations. The results also create opportunities for changing milk fat composition through breeding by selecting individuals based on their genetic merit for milk fat composition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2156-12-43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Genome-wide association of milk fatty acids in Dutch dairy cattle", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0b00c6f3fb12cceefee35cbdbf8f50c9731777af461ccd57425016eb3b70c07"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21569316"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2156-12-43"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047167143"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2156-12-43", 
      "https://app.dimensions.ai/details/publication/pub.1047167143"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2156-12-43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-12-43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-12-43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-12-43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-12-43'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      82 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2156-12-43 schema:about N0442592947304f709e2a47e3d4a4c468
2 N0f9edee0a7b54bbaa7be6b4c61fa3c45
3 N11d7f9bc0b1f40acb34c668cc3193113
4 N1af4973a0dfa429fbf35320025b45ebc
5 N469d699ef0404ea696ab7c802a806047
6 N622ba3c9c9f64ff88b2b2663abae5bf2
7 N6a7399b553b6474ba31e06e444a143b2
8 N890316ea1ddb4904a9509d0b17db5860
9 N8f8f5c434ba84479ab9315834afcee34
10 Nb4ffef1483f54a62b8ad2db01cca7e39
11 Ndbc417ebbcf04d8c8cf4d3c8dc7e38e3
12 Ne18828f877e345019d6477e7fd9dead6
13 Nf2867a68443048b49a7f9def4f4b281c
14 Nf2a78d7a619a4a2ab972b6d385b36e8a
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author N22c91cff6ce04ebf891958b6c8c3d78f
18 schema:citation sg:pub.10.1007/s00335-003-2286-8
19 sg:pub.10.1007/s00335-006-0102-y
20 sg:pub.10.1038/nrg2575
21 sg:pub.10.1186/1471-2156-8-32
22 sg:pub.10.1186/1471-2164-10-180
23 sg:pub.10.1186/1471-2164-9-366
24 sg:pub.10.1186/gb-2009-10-4-r42
25 https://app.dimensions.ai/details/publication/pub.1083023520
26 https://doi.org/10.1016/s0952-3278(02)00259-4
27 https://doi.org/10.1073/pnas.1530509100
28 https://doi.org/10.1093/bioinformatics/btl675
29 https://doi.org/10.1093/bioinformatics/btm025
30 https://doi.org/10.1101/gr.224202
31 https://doi.org/10.1101/gr.3806705
32 https://doi.org/10.1111/j.1365-2052.2007.01635.x
33 https://doi.org/10.1111/j.1365-2052.2007.01643.x
34 https://doi.org/10.1111/j.1365-2052.2009.01940.x
35 https://doi.org/10.1111/j.1365-2052.2010.02058.x
36 https://doi.org/10.1111/j.1365-2052.2010.02088.x
37 https://doi.org/10.1111/j.1439-0388.2008.00796.x
38 https://doi.org/10.1152/physiolgenomics.00103.2004
39 https://doi.org/10.1194/jlr.m500553-jlr200
40 https://doi.org/10.2527/1992.7072000x
41 https://doi.org/10.2527/jas.2007-0676
42 https://doi.org/10.2527/jas.2009-2713
43 https://doi.org/10.3168/jds.2006-617
44 https://doi.org/10.3168/jds.2006-812
45 https://doi.org/10.3168/jds.2006-855
46 https://doi.org/10.3168/jds.2007-0054
47 https://doi.org/10.3168/jds.2007-0181
48 https://doi.org/10.3168/jds.2007-0333
49 https://doi.org/10.3168/jds.2007-0825
50 https://doi.org/10.3168/jds.2008-1445
51 https://doi.org/10.3168/jds.2008-1484
52 https://doi.org/10.3168/jds.2008-1965
53 https://doi.org/10.3168/jds.2008-1966
54 https://doi.org/10.3168/jds.2009-2581
55 https://doi.org/10.3168/jds.2009-2893
56 https://doi.org/10.3168/jds.s0022-0302(02)74079-4
57 schema:datePublished 2011-12
58 schema:datePublishedReg 2011-12-01
59 schema:description BACKGROUND: Identifying genomic regions, and preferably individual genes, responsible for genetic variation in milk fat composition of bovine milk will enhance the understanding of biological pathways involved in fatty acid synthesis and may point to opportunities for changing milk fat composition via selective breeding. An association study of 50,000 single nucleotide polymorphisms (SNPs) was performed for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to identify genomic regions associated with individual fatty acids in bovine milk. RESULTS: The two-step single SNP association analysis found a total of 54 regions on 29 chromosomes that were significantly associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with seven to ten traits, explaining a relatively large percentage of the total additive genetic variation. Many additional regions were significantly associated with the fatty acids. Some of the regions harbor genes that are known to be involved in fat synthesis or were previously identified as underlying quantitative trait loci for fat yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and AGPAT6 on BTA 27. CONCLUSIONS: Medium chain and unsaturated fatty acids are strongly influenced by polymorphisms in DGAT1 and SCD1. Other regions also showed significant associations with the fatty acids studied. These additional regions explain a relatively small percentage of the total additive genetic variance, but they are relevant to the total genetic merit of an individual and in unraveling the genetic background of milk fat composition. Regions identified in this study can be fine mapped to find causal mutations. The results also create opportunities for changing milk fat composition through breeding by selecting individuals based on their genetic merit for milk fat composition.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree true
63 schema:isPartOf N285a357b66f145c1a4a97c58473d4f9d
64 N37c9ac8dd4d34af8b3293c505f3643ce
65 sg:journal.1024251
66 schema:name Genome-wide association of milk fatty acids in Dutch dairy cattle
67 schema:pagination 43
68 schema:productId N0529146d69d0493d80b9a868be5f5ceb
69 N2edcbddab3fc4a8e88b63914bfef0d94
70 N9873c41172d444f1b6991dfc2adf2837
71 Na87ebea8a9314dda9c6e79af2cf20ccc
72 Nd1d95713049841baab6604b703cdee69
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047167143
74 https://doi.org/10.1186/1471-2156-12-43
75 schema:sdDatePublished 2019-04-10T15:50
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N8c03a3c4528149f0b676e9e3367c1d80
78 schema:url http://link.springer.com/10.1186%2F1471-2156-12-43
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N0442592947304f709e2a47e3d4a4c468 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Female
84 rdf:type schema:DefinedTerm
85 N0529146d69d0493d80b9a868be5f5ceb schema:name pubmed_id
86 schema:value 21569316
87 rdf:type schema:PropertyValue
88 N0f9edee0a7b54bbaa7be6b4c61fa3c45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Quantitative Trait Loci
90 rdf:type schema:DefinedTerm
91 N11d7f9bc0b1f40acb34c668cc3193113 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Milk
93 rdf:type schema:DefinedTerm
94 N1af4973a0dfa429fbf35320025b45ebc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Stearoyl-CoA Desaturase
96 rdf:type schema:DefinedTerm
97 N22c91cff6ce04ebf891958b6c8c3d78f rdf:first sg:person.01323605530.55
98 rdf:rest N42f5e788529c4b20b926cc34fe5e7939
99 N285a357b66f145c1a4a97c58473d4f9d schema:volumeNumber 12
100 rdf:type schema:PublicationVolume
101 N2edcbddab3fc4a8e88b63914bfef0d94 schema:name doi
102 schema:value 10.1186/1471-2156-12-43
103 rdf:type schema:PropertyValue
104 N37c9ac8dd4d34af8b3293c505f3643ce schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N42f5e788529c4b20b926cc34fe5e7939 rdf:first sg:person.01145703356.63
107 rdf:rest Nabdf55ee8d5c4489907e57d67aed92a0
108 N469d699ef0404ea696ab7c802a806047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Cattle
110 rdf:type schema:DefinedTerm
111 N622ba3c9c9f64ff88b2b2663abae5bf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Chromatography, Gas
113 rdf:type schema:DefinedTerm
114 N6a7399b553b6474ba31e06e444a143b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Netherlands
116 rdf:type schema:DefinedTerm
117 N890316ea1ddb4904a9509d0b17db5860 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Genotype
119 rdf:type schema:DefinedTerm
120 N8c03a3c4528149f0b676e9e3367c1d80 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N8f8f5c434ba84479ab9315834afcee34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Lactation
124 rdf:type schema:DefinedTerm
125 N9873c41172d444f1b6991dfc2adf2837 schema:name dimensions_id
126 schema:value pub.1047167143
127 rdf:type schema:PropertyValue
128 Na87ebea8a9314dda9c6e79af2cf20ccc schema:name readcube_id
129 schema:value e0b00c6f3fb12cceefee35cbdbf8f50c9731777af461ccd57425016eb3b70c07
130 rdf:type schema:PropertyValue
131 Nabdf55ee8d5c4489907e57d67aed92a0 rdf:first sg:person.011470534067.05
132 rdf:rest Ne75070b5377447d98f0a135e4e40365e
133 Nb4ffef1483f54a62b8ad2db01cca7e39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Fatty Acids
135 rdf:type schema:DefinedTerm
136 Nd1d95713049841baab6604b703cdee69 schema:name nlm_unique_id
137 schema:value 100966978
138 rdf:type schema:PropertyValue
139 Ndbc417ebbcf04d8c8cf4d3c8dc7e38e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Phenotype
141 rdf:type schema:DefinedTerm
142 Ne18828f877e345019d6477e7fd9dead6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Diacylglycerol O-Acyltransferase
144 rdf:type schema:DefinedTerm
145 Ne75070b5377447d98f0a135e4e40365e rdf:first sg:person.014772210737.08
146 rdf:rest rdf:nil
147 Nf2867a68443048b49a7f9def4f4b281c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Animals
149 rdf:type schema:DefinedTerm
150 Nf2a78d7a619a4a2ab972b6d385b36e8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Polymorphism, Single Nucleotide
152 rdf:type schema:DefinedTerm
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
157 schema:name Genetics
158 rdf:type schema:DefinedTerm
159 sg:journal.1024251 schema:issn 1471-2156
160 schema:name BMC Genetics
161 rdf:type schema:Periodical
162 sg:person.01145703356.63 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
163 schema:familyName Bovenhuis
164 schema:givenName Henk
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145703356.63
166 rdf:type schema:Person
167 sg:person.011470534067.05 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
168 schema:familyName Visker
169 schema:givenName Marleen HPW
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470534067.05
171 rdf:type schema:Person
172 sg:person.01323605530.55 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
173 schema:familyName Bouwman
174 schema:givenName Aniek C
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323605530.55
176 rdf:type schema:Person
177 sg:person.014772210737.08 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
178 schema:familyName van Arendonk
179 schema:givenName Johan AM
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772210737.08
181 rdf:type schema:Person
182 sg:pub.10.1007/s00335-003-2286-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011417847
183 https://doi.org/10.1007/s00335-003-2286-8
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00335-006-0102-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061181
186 https://doi.org/10.1007/s00335-006-0102-y
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nrg2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051461847
189 https://doi.org/10.1038/nrg2575
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2156-8-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017702520
192 https://doi.org/10.1186/1471-2156-8-32
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2164-10-180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006120907
195 https://doi.org/10.1186/1471-2164-10-180
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2164-9-366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031802297
198 https://doi.org/10.1186/1471-2164-9-366
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/gb-2009-10-4-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097093
201 https://doi.org/10.1186/gb-2009-10-4-r42
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1083023520 schema:CreativeWork
204 https://doi.org/10.1016/s0952-3278(02)00259-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009672714
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/btl675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007752837
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bioinformatics/btm025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034750111
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1101/gr.224202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005941767
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1101/gr.3806705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035976635
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/j.1365-2052.2007.01635.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034406634
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1365-2052.2007.01643.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051049911
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1111/j.1365-2052.2009.01940.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032415155
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1111/j.1365-2052.2010.02058.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013179589
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/j.1365-2052.2010.02088.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051994576
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/j.1439-0388.2008.00796.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049899408
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1152/physiolgenomics.00103.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022592457
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1194/jlr.m500553-jlr200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030603499
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2527/1992.7072000x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070878720
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2527/jas.2007-0676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070886321
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2527/jas.2009-2713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887292
237 rdf:type schema:CreativeWork
238 https://doi.org/10.3168/jds.2006-617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077464007
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3168/jds.2006-812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077421294
241 rdf:type schema:CreativeWork
242 https://doi.org/10.3168/jds.2006-855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077434517
243 rdf:type schema:CreativeWork
244 https://doi.org/10.3168/jds.2007-0054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077464004
245 rdf:type schema:CreativeWork
246 https://doi.org/10.3168/jds.2007-0181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077537171
247 rdf:type schema:CreativeWork
248 https://doi.org/10.3168/jds.2007-0333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077679330
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3168/jds.2007-0825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077636649
251 rdf:type schema:CreativeWork
252 https://doi.org/10.3168/jds.2008-1445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077828887
253 rdf:type schema:CreativeWork
254 https://doi.org/10.3168/jds.2008-1484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077933292
255 rdf:type schema:CreativeWork
256 https://doi.org/10.3168/jds.2008-1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077948290
257 rdf:type schema:CreativeWork
258 https://doi.org/10.3168/jds.2008-1966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077948289
259 rdf:type schema:CreativeWork
260 https://doi.org/10.3168/jds.2009-2581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020073557
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3168/jds.2009-2893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017394226
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3168/jds.s0022-0302(02)74079-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075020463
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
267 schema:name Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, the Netherlands
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...