High-resolution haplotype block structure in the cattle genome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Rafael Villa-Angulo, Lakshmi K Matukumalli, Clare A Gill, Jungwoo Choi, Curtis P Van Tassell, John J Grefenstette

ABSTRACT

BACKGROUND: The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use. RESULTS: From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1-100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure. CONCLUSION: This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1-100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in Bos taurus breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome. More... »

PAGES

19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2156-10-19

DOI

http://dx.doi.org/10.1186/1471-2156-10-19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039058389

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19393054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "Department of Bioinformatics and Computational Biology, George Mason University, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villa-Angulo", 
        "givenName": "Rafael", 
        "id": "sg:person.01235151510.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235151510.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Department of Bioinformatics and Computational Biology, George Mason University, VA, USA", 
            "Bovine Functional Genomics Laboratory, USDA-ARS, Beltsville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matukumalli", 
        "givenName": "Lakshmi K", 
        "id": "sg:person.01235277435.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235277435.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Animal Science, Texas A&M University, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gill", 
        "givenName": "Clare A", 
        "id": "sg:person.01037751611.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037751611.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Animal Science, Texas A&M University, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jungwoo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Bovine Functional Genomics Laboratory, USDA-ARS, Beltsville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Tassell", 
        "givenName": "Curtis P", 
        "id": "sg:person.011043216637.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011043216637.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "Department of Bioinformatics and Computational Biology, George Mason University, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grefenstette", 
        "givenName": "John J", 
        "id": "sg:person.011222423721.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222423721.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2156-8-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000111034", 
          "https://doi.org/10.1186/1471-2156-8-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.067355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001780169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.067355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001780169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(71)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002152407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003907648", 
          "https://doi.org/10.1186/1471-2105-7-468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.069369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004166133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.069369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004166133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010221272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011318612", 
          "https://doi.org/10.1186/1471-2105-7-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.075804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015741729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.075804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015741729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2007.01686.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019832379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027164963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2007.01683.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034456015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034942023", 
          "https://doi.org/10.1038/nmeth.1185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036876479", 
          "https://doi.org/10.1038/nature06250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037825612", 
          "https://doi.org/10.1038/nature06742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6023607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040514825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2668204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040630809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/14737159.5.2.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041472488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.387103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046110116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368455a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046878300", 
          "https://doi.org/10.1038/368455a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048911594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-008-0726-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049174876", 
          "https://doi.org/10.1007/s00122-008-0726-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-008-0726-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049174876", 
          "https://doi.org/10.1007/s00122-008-0726-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051134045", 
          "https://doi.org/10.1038/nature06258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/502802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058783626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/515510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058789899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/past/59.1.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059971040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use.\nRESULTS: From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1-100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure.\nCONCLUSION: This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1-100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in Bos taurus breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2156-10-19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "High-resolution haplotype block structure in the cattle genome", 
    "pagination": "19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ba0dc19ff3dc56b51f5a71543e9080e7fdd6f6589b7a570324d625a075ec6b65"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19393054"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2156-10-19"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039058389"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2156-10-19", 
      "https://app.dimensions.ai/details/publication/pub.1039058389"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2156-10-19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-10-19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-10-19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-10-19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2156-10-19'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      71 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2156-10-19 schema:about N028214c75ae948c69e82b89696322a74
2 N0d4d9dc00fb545549d8728cf8032c159
3 N224b3558e383440a994ec2b84d6dcb2e
4 N28a9300d872d4ee8b0ee7af76d98b36d
5 N2f61f042fd324b499cb2ee311951d298
6 N740d96cc3d054b5584832eb00d6d4702
7 N98118d14269249949853e54ddd9040ab
8 Nc72973a4e7a54cb2bd970dcde9621ff8
9 Nc7c91313723642a88fc08139d7909412
10 Nd0f7ffe7e2314bdc97a05f36246fdc08
11 Nd3555bf139b94490bf94d9a7235f1f37
12 Ne27f7aa9a5344c449bf7001de70f0ead
13 Nebe62e0e92624034bac5ee5e14b9f316
14 Nfba274c33db04de9b5cf54c1291f1bcf
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author N7f27349599d1444fa0b3b97ae6ef19aa
18 schema:citation sg:pub.10.1007/s00122-008-0726-2
19 sg:pub.10.1038/368455a0
20 sg:pub.10.1038/nature04226
21 sg:pub.10.1038/nature06250
22 sg:pub.10.1038/nature06258
23 sg:pub.10.1038/nature06742
24 sg:pub.10.1038/ng1001-229
25 sg:pub.10.1038/nmeth.1185
26 sg:pub.10.1186/1471-2105-7-4
27 sg:pub.10.1186/1471-2105-7-468
28 sg:pub.10.1186/1471-2156-8-74
29 https://doi.org/10.1016/0040-5809(71)90011-6
30 https://doi.org/10.1086/502802
31 https://doi.org/10.1086/515510
32 https://doi.org/10.1093/bioinformatics/bti649
33 https://doi.org/10.1093/past/59.1.3
34 https://doi.org/10.1101/gr.2668204
35 https://doi.org/10.1101/gr.387103
36 https://doi.org/10.1101/gr.6023607
37 https://doi.org/10.1111/j.1365-2052.2007.01683.x
38 https://doi.org/10.1111/j.1365-2052.2007.01686.x
39 https://doi.org/10.1126/science.1069424
40 https://doi.org/10.1126/science.1167936
41 https://doi.org/10.1371/journal.pgen.0020121
42 https://doi.org/10.1534/genetics.106.067355
43 https://doi.org/10.1534/genetics.106.069369
44 https://doi.org/10.1534/genetics.107.075804
45 https://doi.org/10.1586/14737159.5.2.159
46 schema:datePublished 2009-12
47 schema:datePublishedReg 2009-12-01
48 schema:description BACKGROUND: The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use. RESULTS: From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1-100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure. CONCLUSION: This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1-100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in Bos taurus breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N34b153f01b4e4dcaba2259fd3bab41ff
53 Nc5bc4a8d2f1f4c84b3b6764c23824fa1
54 sg:journal.1024251
55 schema:name High-resolution haplotype block structure in the cattle genome
56 schema:pagination 19
57 schema:productId N13050989809e4344bd0da8e55cbdbbea
58 N285c47d42702417ba7b936d2a43a0f29
59 N62998bb8c01944de94a6c3ae820a9117
60 Na9f25b4d79e04926880abfa8dc256ca6
61 Ndc60bdb46ecb4b8a91f5303ba7769c25
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039058389
63 https://doi.org/10.1186/1471-2156-10-19
64 schema:sdDatePublished 2019-04-10T14:59
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N4cb3b36675b648ecb2c4f2f7d57d0da1
67 schema:url http://link.springer.com/10.1186%2F1471-2156-10-19
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N028214c75ae948c69e82b89696322a74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Genome
73 rdf:type schema:DefinedTerm
74 N0ca7a676e2014b41b308e2c953d694b0 rdf:first sg:person.01235277435.02
75 rdf:rest Nefcc14aea5dc43bcb5bab0605cddf812
76 N0d4d9dc00fb545549d8728cf8032c159 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Haplotypes
78 rdf:type schema:DefinedTerm
79 N13050989809e4344bd0da8e55cbdbbea schema:name doi
80 schema:value 10.1186/1471-2156-10-19
81 rdf:type schema:PropertyValue
82 N224b3558e383440a994ec2b84d6dcb2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Algorithms
84 rdf:type schema:DefinedTerm
85 N285c47d42702417ba7b936d2a43a0f29 schema:name nlm_unique_id
86 schema:value 100966978
87 rdf:type schema:PropertyValue
88 N28a9300d872d4ee8b0ee7af76d98b36d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Female
90 rdf:type schema:DefinedTerm
91 N2f61f042fd324b499cb2ee311951d298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Gene Frequency
93 rdf:type schema:DefinedTerm
94 N34b153f01b4e4dcaba2259fd3bab41ff schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N37b3ae0a3fe343e290462fa86e3cd7e6 rdf:first sg:person.011222423721.43
97 rdf:rest rdf:nil
98 N4cb3b36675b648ecb2c4f2f7d57d0da1 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N62998bb8c01944de94a6c3ae820a9117 schema:name dimensions_id
101 schema:value pub.1039058389
102 rdf:type schema:PropertyValue
103 N6b9bd5c3a34c4d94be6e4a87898aa402 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
104 schema:familyName Choi
105 schema:givenName Jungwoo
106 rdf:type schema:Person
107 N740d96cc3d054b5584832eb00d6d4702 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Polymorphism, Single Nucleotide
109 rdf:type schema:DefinedTerm
110 N7f163687f4b446c497a8cf4cd195f0d8 rdf:first sg:person.011043216637.39
111 rdf:rest N37b3ae0a3fe343e290462fa86e3cd7e6
112 N7f27349599d1444fa0b3b97ae6ef19aa rdf:first sg:person.01235151510.60
113 rdf:rest N0ca7a676e2014b41b308e2c953d694b0
114 N98118d14269249949853e54ddd9040ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Cluster Analysis
116 rdf:type schema:DefinedTerm
117 Na9f25b4d79e04926880abfa8dc256ca6 schema:name pubmed_id
118 schema:value 19393054
119 rdf:type schema:PropertyValue
120 Nab58c2b768924c00bfcbe2a660f61a77 rdf:first N6b9bd5c3a34c4d94be6e4a87898aa402
121 rdf:rest N7f163687f4b446c497a8cf4cd195f0d8
122 Nc5bc4a8d2f1f4c84b3b6764c23824fa1 schema:volumeNumber 10
123 rdf:type schema:PublicationVolume
124 Nc72973a4e7a54cb2bd970dcde9621ff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Breeding
126 rdf:type schema:DefinedTerm
127 Nc7c91313723642a88fc08139d7909412 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Genotype
129 rdf:type schema:DefinedTerm
130 Nd0f7ffe7e2314bdc97a05f36246fdc08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Cattle
132 rdf:type schema:DefinedTerm
133 Nd3555bf139b94490bf94d9a7235f1f37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Male
135 rdf:type schema:DefinedTerm
136 Ndc60bdb46ecb4b8a91f5303ba7769c25 schema:name readcube_id
137 schema:value ba0dc19ff3dc56b51f5a71543e9080e7fdd6f6589b7a570324d625a075ec6b65
138 rdf:type schema:PropertyValue
139 Ne27f7aa9a5344c449bf7001de70f0ead schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Phylogeny
141 rdf:type schema:DefinedTerm
142 Nebe62e0e92624034bac5ee5e14b9f316 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Linkage Disequilibrium
144 rdf:type schema:DefinedTerm
145 Nefcc14aea5dc43bcb5bab0605cddf812 rdf:first sg:person.01037751611.06
146 rdf:rest Nab58c2b768924c00bfcbe2a660f61a77
147 Nfba274c33db04de9b5cf54c1291f1bcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Animals
149 rdf:type schema:DefinedTerm
150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
151 schema:name Biological Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
154 schema:name Genetics
155 rdf:type schema:DefinedTerm
156 sg:journal.1024251 schema:issn 1471-2156
157 schema:name BMC Genetics
158 rdf:type schema:Periodical
159 sg:person.01037751611.06 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
160 schema:familyName Gill
161 schema:givenName Clare A
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037751611.06
163 rdf:type schema:Person
164 sg:person.011043216637.39 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
165 schema:familyName Van Tassell
166 schema:givenName Curtis P
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011043216637.39
168 rdf:type schema:Person
169 sg:person.011222423721.43 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
170 schema:familyName Grefenstette
171 schema:givenName John J
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222423721.43
173 rdf:type schema:Person
174 sg:person.01235151510.60 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
175 schema:familyName Villa-Angulo
176 schema:givenName Rafael
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235151510.60
178 rdf:type schema:Person
179 sg:person.01235277435.02 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
180 schema:familyName Matukumalli
181 schema:givenName Lakshmi K
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235277435.02
183 rdf:type schema:Person
184 sg:pub.10.1007/s00122-008-0726-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049174876
185 https://doi.org/10.1007/s00122-008-0726-2
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/368455a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046878300
188 https://doi.org/10.1038/368455a0
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
191 https://doi.org/10.1038/nature04226
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature06250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036876479
194 https://doi.org/10.1038/nature06250
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature06258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134045
197 https://doi.org/10.1038/nature06258
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature06742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037825612
200 https://doi.org/10.1038/nature06742
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/ng1001-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026787741
203 https://doi.org/10.1038/ng1001-229
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nmeth.1185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034942023
206 https://doi.org/10.1038/nmeth.1185
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1471-2105-7-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011318612
209 https://doi.org/10.1186/1471-2105-7-4
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1471-2105-7-468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003907648
212 https://doi.org/10.1186/1471-2105-7-468
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1471-2156-8-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000111034
215 https://doi.org/10.1186/1471-2156-8-74
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/0040-5809(71)90011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002152407
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1086/502802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783626
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1086/515510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058789899
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/bioinformatics/bti649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027164963
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/past/59.1.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059971040
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1101/gr.2668204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040630809
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1101/gr.387103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046110116
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1101/gr.6023607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040514825
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/j.1365-2052.2007.01683.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034456015
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/j.1365-2052.2007.01686.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019832379
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1126/science.1167936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010221272
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1371/journal.pgen.0020121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048911594
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1534/genetics.106.067355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001780169
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1534/genetics.106.069369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004166133
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1534/genetics.107.075804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015741729
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1586/14737159.5.2.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041472488
250 rdf:type schema:CreativeWork
251 https://www.grid.ac/institutes/grid.22448.38 schema:alternateName George Mason University
252 schema:name Department of Bioinformatics and Computational Biology, George Mason University, VA, USA
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
255 schema:name Department of Animal Science, Texas A&M University, College Station, TX, USA
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
258 schema:name Bovine Functional Genomics Laboratory, USDA-ARS, Beltsville, MD, USA
259 Department of Bioinformatics and Computational Biology, George Mason University, VA, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...