The distribution of CTL epitopes in HIV-1 appears to be random, and similar to that of other proteomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-08-04

AUTHORS

Boris V Schmid, Can Keşmir, Rob J de Boer

ABSTRACT

BackgroundHIV-1 viruses are highly capable of mutating their proteins to escape the presentation of CTL epitopes in their current host. Upon transmission to another host, some escape mutations revert, but other remain stable in the virus sequence for at least several years. Depending on the rate of accumulation and reversion of escape mutations, HIV-1 could reach a high level of adaptation to the human population. Yusim et. al. hypothesized that the apparent clustering of CTL epitopes in the conserved regions of HIV-1 proteins could be an evolutionary signature left by large-scale adaptation of HIV-1 to its human/simian host.ResultsIn this paper we quantified the distribution of CTL epitopes in HIV-1 and found that that in 99% of the HIV-1 protein sequences, the epitope distribution was indistinguishable from random. Similar percentages were found for HCV, Influenza and for three eukaryote proteomes (Human, Drosophila, Yeast).ConclusionWe conclude that CTL epitopes in HIV-1 are randomly distributed, and that this distribution is similar to the distribution of CTL epitopes in proteins from other proteomes. Therefore, the visually apparent clustering of CTL epitopes in epitope maps should not be interpreted as a signature of a past large-scale adaptation of HIV-1 to the human cellular immune response. More... »

PAGES

184

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-9-184

DOI

http://dx.doi.org/10.1186/1471-2148-9-184

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036566732

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19653887


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Evolutionary Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epitope Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epitopes, T-Lymphocyte", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HIV-1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Theoretical Biology, Utrecht University, the Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology, Utrecht University, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmid", 
        "givenName": "Boris V", 
        "id": "sg:person.0651306273.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651306273.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academic Biomedical Centre, Utrecht University, the Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology, Utrecht University, the Netherlands", 
            "Academic Biomedical Centre, Utrecht University, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ke\u015fmir", 
        "givenName": "Can", 
        "id": "sg:person.01173000123.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology, Utrecht University, the Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology, Utrecht University, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Boer", 
        "givenName": "Rob J", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/328348a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030563313", 
          "https://doi.org/10.1038/328348a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051351131", 
          "https://doi.org/10.1186/1471-2105-7-131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041726315", 
          "https://doi.org/10.1038/nature07746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047365250", 
          "https://doi.org/10.1038/ni922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35085576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005637789", 
          "https://doi.org/10.1038/35085576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000713207", 
          "https://doi.org/10.1038/nm1520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/88656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040162852", 
          "https://doi.org/10.1038/88656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328345a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022500911", 
          "https://doi.org/10.1038/328345a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-005-4528-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022170854", 
          "https://doi.org/10.1007/s00018-005-4528-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00251-004-0691-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010503541", 
          "https://doi.org/10.1007/s00251-004-0691-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-08-04", 
    "datePublishedReg": "2009-08-04", 
    "description": "BackgroundHIV-1 viruses are highly capable of mutating their proteins to escape the presentation of CTL epitopes in their current host. Upon transmission to another host, some escape mutations revert, but other remain stable in the virus sequence for at least several years. Depending on the rate of accumulation and reversion of escape mutations, HIV-1 could reach a high level of adaptation to the human population. Yusim et. al. hypothesized that the apparent clustering of CTL epitopes in the conserved regions of HIV-1 proteins could be an evolutionary signature left by large-scale adaptation of HIV-1 to its human/simian host.ResultsIn this paper we quantified the distribution of CTL epitopes in HIV-1 and found that that in 99% of the HIV-1 protein sequences, the epitope distribution was indistinguishable from random. Similar percentages were found for HCV, Influenza and for three eukaryote proteomes (Human, Drosophila, Yeast).ConclusionWe conclude that CTL epitopes in HIV-1 are randomly distributed, and that this distribution is similar to the distribution of CTL epitopes in proteins from other proteomes. Therefore, the visually apparent clustering of CTL epitopes in epitope maps should not be interpreted as a signature of a past large-scale adaptation of HIV-1 to the human cellular immune response.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2148-9-184", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4113555", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "2730-7182"
        ], 
        "name": "BMC Ecology and Evolution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "CTL epitopes", 
      "HIV-1", 
      "human cellular immune response", 
      "cellular immune responses", 
      "HIV-1 protein sequences", 
      "HIV-1 proteins", 
      "escape mutations", 
      "immune response", 
      "simian hosts", 
      "epitopes", 
      "epitope distribution", 
      "similar percentage", 
      "epitope map", 
      "virus sequences", 
      "apparent clustering", 
      "high levels", 
      "HCV", 
      "influenza", 
      "ResultsIn", 
      "human population", 
      "protein", 
      "ConclusionWe", 
      "virus", 
      "rate of accumulation", 
      "presentation", 
      "host", 
      "population", 
      "proteome", 
      "years", 
      "mutations", 
      "percentage", 
      "response", 
      "levels", 
      "adaptation", 
      "accumulation", 
      "rate", 
      "transmission", 
      "reversion", 
      "current host", 
      "large-scale adaptation", 
      "signatures", 
      "revert", 
      "distribution", 
      "sequence", 
      "region", 
      "clustering", 
      "protein sequences", 
      "maps", 
      "eukaryote proteomes", 
      "evolutionary signatures", 
      "paper"
    ], 
    "name": "The distribution of CTL epitopes in HIV-1 appears to be random, and similar to that of other proteomes", 
    "pagination": "184", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036566732"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-9-184"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19653887"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-9-184", 
      "https://app.dimensions.ai/details/publication/pub.1036566732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_478.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2148-9-184"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-9-184'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-9-184'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-9-184'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-9-184'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      95 URIs      76 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-9-184 schema:about N01fbad8fa1f8468691a5f94b74320d0f
2 N133609cceb4d4642994527932a788f23
3 N175a93757cee4dffaca8ff82cee399f1
4 N23981794b8544c6ea69a9c6b3b330204
5 N86ffbecc0f3c412aaf76ce7dc2ee9e83
6 Nd89473667d37407382d340a3142c7038
7 Ne3fae50473c34a33811e897872a38a60
8 Nf64023335b8943508a930cdfeba8dffa
9 anzsrc-for:06
10 anzsrc-for:0602
11 anzsrc-for:0603
12 schema:author Nf959b9d3c7604467a06edc3484f966bb
13 schema:citation sg:pub.10.1007/s00018-005-4528-2
14 sg:pub.10.1007/s00251-004-0691-0
15 sg:pub.10.1038/328345a0
16 sg:pub.10.1038/328348a0
17 sg:pub.10.1038/35085576
18 sg:pub.10.1038/88656
19 sg:pub.10.1038/nature07746
20 sg:pub.10.1038/ni922
21 sg:pub.10.1038/nm1520
22 sg:pub.10.1186/1471-2105-7-131
23 schema:datePublished 2009-08-04
24 schema:datePublishedReg 2009-08-04
25 schema:description BackgroundHIV-1 viruses are highly capable of mutating their proteins to escape the presentation of CTL epitopes in their current host. Upon transmission to another host, some escape mutations revert, but other remain stable in the virus sequence for at least several years. Depending on the rate of accumulation and reversion of escape mutations, HIV-1 could reach a high level of adaptation to the human population. Yusim et. al. hypothesized that the apparent clustering of CTL epitopes in the conserved regions of HIV-1 proteins could be an evolutionary signature left by large-scale adaptation of HIV-1 to its human/simian host.ResultsIn this paper we quantified the distribution of CTL epitopes in HIV-1 and found that that in 99% of the HIV-1 protein sequences, the epitope distribution was indistinguishable from random. Similar percentages were found for HCV, Influenza and for three eukaryote proteomes (Human, Drosophila, Yeast).ConclusionWe conclude that CTL epitopes in HIV-1 are randomly distributed, and that this distribution is similar to the distribution of CTL epitopes in proteins from other proteomes. Therefore, the visually apparent clustering of CTL epitopes in epitope maps should not be interpreted as a signature of a past large-scale adaptation of HIV-1 to the human cellular immune response.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N3779f6c431e54e50a6e6766e85838da1
29 N827f975103b94dc9be38a95a24fc9779
30 sg:journal.1024249
31 schema:keywords CTL epitopes
32 ConclusionWe
33 HCV
34 HIV-1
35 HIV-1 protein sequences
36 HIV-1 proteins
37 ResultsIn
38 accumulation
39 adaptation
40 apparent clustering
41 cellular immune responses
42 clustering
43 current host
44 distribution
45 epitope distribution
46 epitope map
47 epitopes
48 escape mutations
49 eukaryote proteomes
50 evolutionary signatures
51 high levels
52 host
53 human cellular immune response
54 human population
55 immune response
56 influenza
57 large-scale adaptation
58 levels
59 maps
60 mutations
61 paper
62 percentage
63 population
64 presentation
65 protein
66 protein sequences
67 proteome
68 rate
69 rate of accumulation
70 region
71 response
72 reversion
73 revert
74 sequence
75 signatures
76 simian hosts
77 similar percentage
78 transmission
79 virus
80 virus sequences
81 years
82 schema:name The distribution of CTL epitopes in HIV-1 appears to be random, and similar to that of other proteomes
83 schema:pagination 184
84 schema:productId N996b5698ce4c4ecea6a6dc3bbcf1ddce
85 Naa2edbdb69a549af92461807cf80c6ed
86 Nb430bb8c13de405789d34b86454378b9
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036566732
88 https://doi.org/10.1186/1471-2148-9-184
89 schema:sdDatePublished 2022-11-24T20:54
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Ndc562ab2087240e8bda0a13d1c69a1c4
92 schema:url https://doi.org/10.1186/1471-2148-9-184
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N01fbad8fa1f8468691a5f94b74320d0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Epitope Mapping
98 rdf:type schema:DefinedTerm
99 N077a4073a14e4ed78092128b0a45f0d4 rdf:first sg:person.01173000123.16
100 rdf:rest N6a48c3771ea2433cbc8060d70d46cf48
101 N133609cceb4d4642994527932a788f23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Sequence Analysis, Protein
103 rdf:type schema:DefinedTerm
104 N175a93757cee4dffaca8ff82cee399f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Cluster Analysis
106 rdf:type schema:DefinedTerm
107 N23981794b8544c6ea69a9c6b3b330204 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Adaptation, Biological
109 rdf:type schema:DefinedTerm
110 N3779f6c431e54e50a6e6766e85838da1 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N6a48c3771ea2433cbc8060d70d46cf48 rdf:first sg:person.0774503452.97
113 rdf:rest rdf:nil
114 N827f975103b94dc9be38a95a24fc9779 schema:volumeNumber 9
115 rdf:type schema:PublicationVolume
116 N86ffbecc0f3c412aaf76ce7dc2ee9e83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name HIV-1
118 rdf:type schema:DefinedTerm
119 N996b5698ce4c4ecea6a6dc3bbcf1ddce schema:name pubmed_id
120 schema:value 19653887
121 rdf:type schema:PropertyValue
122 Naa2edbdb69a549af92461807cf80c6ed schema:name dimensions_id
123 schema:value pub.1036566732
124 rdf:type schema:PropertyValue
125 Nb430bb8c13de405789d34b86454378b9 schema:name doi
126 schema:value 10.1186/1471-2148-9-184
127 rdf:type schema:PropertyValue
128 Nd89473667d37407382d340a3142c7038 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Epitopes, T-Lymphocyte
130 rdf:type schema:DefinedTerm
131 Ndc562ab2087240e8bda0a13d1c69a1c4 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Ne3fae50473c34a33811e897872a38a60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Proteome
135 rdf:type schema:DefinedTerm
136 Nf64023335b8943508a930cdfeba8dffa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Evolution, Molecular
138 rdf:type schema:DefinedTerm
139 Nf959b9d3c7604467a06edc3484f966bb rdf:first sg:person.0651306273.52
140 rdf:rest N077a4073a14e4ed78092128b0a45f0d4
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
145 schema:name Ecology
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0603 schema:inDefinedTermSet anzsrc-for:
148 schema:name Evolutionary Biology
149 rdf:type schema:DefinedTerm
150 sg:grant.4113555 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2148-9-184
151 rdf:type schema:MonetaryGrant
152 sg:journal.1024249 schema:issn 2730-7182
153 schema:name BMC Ecology and Evolution
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.01173000123.16 schema:affiliation grid-institutes:grid.5477.1
157 schema:familyName Keşmir
158 schema:givenName Can
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16
160 rdf:type schema:Person
161 sg:person.0651306273.52 schema:affiliation grid-institutes:grid.5477.1
162 schema:familyName Schmid
163 schema:givenName Boris V
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651306273.52
165 rdf:type schema:Person
166 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
167 schema:familyName de Boer
168 schema:givenName Rob J
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
170 rdf:type schema:Person
171 sg:pub.10.1007/s00018-005-4528-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022170854
172 https://doi.org/10.1007/s00018-005-4528-2
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00251-004-0691-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010503541
175 https://doi.org/10.1007/s00251-004-0691-0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/328345a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022500911
178 https://doi.org/10.1038/328345a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/328348a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030563313
181 https://doi.org/10.1038/328348a0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/35085576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005637789
184 https://doi.org/10.1038/35085576
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/88656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040162852
187 https://doi.org/10.1038/88656
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature07746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041726315
190 https://doi.org/10.1038/nature07746
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/ni922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047365250
193 https://doi.org/10.1038/ni922
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nm1520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000713207
196 https://doi.org/10.1038/nm1520
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/1471-2105-7-131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051351131
199 https://doi.org/10.1186/1471-2105-7-131
200 rdf:type schema:CreativeWork
201 grid-institutes:grid.5477.1 schema:alternateName Academic Biomedical Centre, Utrecht University, the Netherlands
202 Theoretical Biology, Utrecht University, the Netherlands
203 schema:name Academic Biomedical Centre, Utrecht University, the Netherlands
204 Theoretical Biology, Utrecht University, the Netherlands
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...