Birth-death prior on phylogeny and speed dating View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Örjan Åkerborg, Bengt Sennblad, Jens Lagergren

ABSTRACT

BACKGROUND: In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC) framework, an approach requiring computation times of hours or days when applied to large phylogenies. RESULTS: We demonstrate that a hill-climbing maximum a posteriori (MAP) adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP) algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL) method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes later on. CONCLUSION: Our contribution leaves the field open for fast and accurate dating analysis of nucleotide sequence data. Modeling branch substitutions rates and divergence times separately allows us to include birth-death priors on the times without the assumption of a molecular clock. The methodology is easily adapted to take data from fossil records into account and it can be used together with a broad range of rate and substitution models. More... »

PAGES

77

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-8-77

DOI

http://dx.doi.org/10.1186/1471-2148-8-77

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004154933

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18318893


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Speciation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Stockholm Bioinformatics Centre (SBC), Albanova, Stockholm University, SE-10691, Stockholm, Sweden", 
            "School for Computer Science and Communication (CSC), Royal Institute of Technology (KTH), SE-10044, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c5kerborg", 
        "givenName": "\u00d6rjan", 
        "id": "sg:person.01270054227.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270054227.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Stockholm Bioinformatics Centre (SBC), Albanova, Stockholm University, SE-10691, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sennblad", 
        "givenName": "Bengt", 
        "id": "sg:person.01336167427.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336167427.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Stockholm Bioinformatics Centre (SBC), Albanova, Stockholm University, SE-10691, Stockholm, Sweden", 
            "School for Computer Science and Communication (CSC), Royal Institute of Technology (KTH), SE-10044, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagergren", 
        "givenName": "Jens", 
        "id": "sg:person.0611475642.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611475642.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/molbev/msm193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000129938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002608520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010834417", 
          "https://doi.org/10.1038/46536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010834417", 
          "https://doi.org/10.1038/46536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015458280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-3211-9.50009-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016180325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016347110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-2484(89)90075-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020765569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/967900.967940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022010979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022948655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023974539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02338839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024828777", 
          "https://doi.org/10.1007/bf02338839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02338839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024828777", 
          "https://doi.org/10.1007/bf02338839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/974614.974657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027523619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029488311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-294x.2004.02106.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029726100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1601-5223.2000.00217.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030937821", 
          "https://doi.org/10.1111/j.1601-5223.2000.00217.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031295681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-2734-4.50017-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032138540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037373684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037373684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00001.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041443560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01734359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065382", 
          "https://doi.org/10.1007/bf01734359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01734359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065382", 
          "https://doi.org/10.1007/bf01734359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msj024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044862822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msj024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044862822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050174051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2000.10474227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150290102375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150390235520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150590945313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150590947311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150701420643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369696"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC) framework, an approach requiring computation times of hours or days when applied to large phylogenies.\nRESULTS: We demonstrate that a hill-climbing maximum a posteriori (MAP) adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP) algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL) method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes later on.\nCONCLUSION: Our contribution leaves the field open for fast and accurate dating analysis of nucleotide sequence data. Modeling branch substitutions rates and divergence times separately allows us to include birth-death priors on the times without the assumption of a molecular clock. The methodology is easily adapted to take data from fossil records into account and it can be used together with a broad range of rate and substitution models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2148-8-77", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Birth-death prior on phylogeny and speed dating", 
    "pagination": "77", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13cc987deac8a842a480ffe94fa9c223c2be3782ec9a017d08493aaed7c24ac8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18318893"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-8-77"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004154933"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-8-77", 
      "https://app.dimensions.ai/details/publication/pub.1004154933"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2148-8-77"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-8-77'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-8-77'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-8-77'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-8-77'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      64 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-8-77 schema:about N2d9e327720dd491aa776263b64b5ca70
2 N45330994b6e04e7c85d52d17b84878f1
3 N4e308200c62d4d729fab5f21e73a6729
4 N760b183782994b11a0e40fdb02a39af6
5 N7d21010272ec48f7b52bf161ffe794ba
6 Naf70d691f04941e4b198ff2e1148deee
7 Nb351015647fe457daa1ebae1f3ff6c44
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N1e01b27d17d14fd98a4afd3cc003e977
11 schema:citation sg:pub.10.1007/bf01734359
12 sg:pub.10.1007/bf02338839
13 sg:pub.10.1038/46536
14 sg:pub.10.1111/j.1601-5223.2000.00217.x
15 https://doi.org/10.1016/0047-2484(89)90075-4
16 https://doi.org/10.1016/b978-1-4832-2734-4.50017-6
17 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
18 https://doi.org/10.1046/j.1365-294x.2004.02106.x
19 https://doi.org/10.1080/01621459.2000.10474227
20 https://doi.org/10.1080/10635150290102375
21 https://doi.org/10.1080/10635150390235520
22 https://doi.org/10.1080/10635150590945313
23 https://doi.org/10.1080/10635150590947311
24 https://doi.org/10.1080/10635150701420643
25 https://doi.org/10.1093/bioinformatics/btg1000
26 https://doi.org/10.1093/molbev/msj024
27 https://doi.org/10.1093/molbev/msm193
28 https://doi.org/10.1093/oxfordjournals.molbev.a003811
29 https://doi.org/10.1093/oxfordjournals.molbev.a003974
30 https://doi.org/10.1093/oxfordjournals.molbev.a025731
31 https://doi.org/10.1093/oxfordjournals.molbev.a025811
32 https://doi.org/10.1093/oxfordjournals.molbev.a025892
33 https://doi.org/10.1093/oxfordjournals.molbev.a026389
34 https://doi.org/10.1111/j.0006-341x.1999.00001.x
35 https://doi.org/10.1145/967900.967940
36 https://doi.org/10.1145/974614.974657
37 https://doi.org/10.1214/ss/1177011136
38 https://doi.org/10.1371/journal.pbio.0040088
39 schema:datePublished 2008-12
40 schema:datePublishedReg 2008-12-01
41 schema:description BACKGROUND: In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC) framework, an approach requiring computation times of hours or days when applied to large phylogenies. RESULTS: We demonstrate that a hill-climbing maximum a posteriori (MAP) adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP) algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL) method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes later on. CONCLUSION: Our contribution leaves the field open for fast and accurate dating analysis of nucleotide sequence data. Modeling branch substitutions rates and divergence times separately allows us to include birth-death priors on the times without the assumption of a molecular clock. The methodology is easily adapted to take data from fossil records into account and it can be used together with a broad range of rate and substitution models.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N07eb2547a0d9424d9f59dc476e2602d6
46 Nce527c60359c402fbc75dfb1ecead3ba
47 sg:journal.1024249
48 schema:name Birth-death prior on phylogeny and speed dating
49 schema:pagination 77
50 schema:productId N1d26dc6afb204560842b749f0ce676f8
51 N2c09305f321a45db8835031fd45496aa
52 N3fcc345ac8c944afb980834716db84b0
53 N6ab523a4177248d797bf9ee5a38662fc
54 N6e74dcda1ec4467fa6ba72d8992110d3
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004154933
56 https://doi.org/10.1186/1471-2148-8-77
57 schema:sdDatePublished 2019-04-10T23:22
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Naa0a8419e5fd4a60910f9a5f8a2a2758
60 schema:url http://link.springer.com/10.1186%2F1471-2148-8-77
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N07eb2547a0d9424d9f59dc476e2602d6 schema:volumeNumber 8
65 rdf:type schema:PublicationVolume
66 N1d26dc6afb204560842b749f0ce676f8 schema:name dimensions_id
67 schema:value pub.1004154933
68 rdf:type schema:PropertyValue
69 N1e01b27d17d14fd98a4afd3cc003e977 rdf:first sg:person.01270054227.80
70 rdf:rest Nc75f516341dd4ba89cc808c3f917480e
71 N2c09305f321a45db8835031fd45496aa schema:name doi
72 schema:value 10.1186/1471-2148-8-77
73 rdf:type schema:PropertyValue
74 N2d9e327720dd491aa776263b64b5ca70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Animals
76 rdf:type schema:DefinedTerm
77 N3fcc345ac8c944afb980834716db84b0 schema:name pubmed_id
78 schema:value 18318893
79 rdf:type schema:PropertyValue
80 N45330994b6e04e7c85d52d17b84878f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Genetic Speciation
82 rdf:type schema:DefinedTerm
83 N4e308200c62d4d729fab5f21e73a6729 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Phylogeny
85 rdf:type schema:DefinedTerm
86 N6ab523a4177248d797bf9ee5a38662fc schema:name nlm_unique_id
87 schema:value 100966975
88 rdf:type schema:PropertyValue
89 N6e74dcda1ec4467fa6ba72d8992110d3 schema:name readcube_id
90 schema:value 13cc987deac8a842a480ffe94fa9c223c2be3782ec9a017d08493aaed7c24ac8
91 rdf:type schema:PropertyValue
92 N760b183782994b11a0e40fdb02a39af6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Adaptation, Physiological
94 rdf:type schema:DefinedTerm
95 N7d21010272ec48f7b52bf161ffe794ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Evolution, Molecular
97 rdf:type schema:DefinedTerm
98 N8f7080dc9994410b9ccd6d6dd8dd61ed rdf:first sg:person.0611475642.77
99 rdf:rest rdf:nil
100 Naa0a8419e5fd4a60910f9a5f8a2a2758 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Naf70d691f04941e4b198ff2e1148deee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Algorithms
104 rdf:type schema:DefinedTerm
105 Nb351015647fe457daa1ebae1f3ff6c44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Computer Simulation
107 rdf:type schema:DefinedTerm
108 Nc75f516341dd4ba89cc808c3f917480e rdf:first sg:person.01336167427.24
109 rdf:rest N8f7080dc9994410b9ccd6d6dd8dd61ed
110 Nce527c60359c402fbc75dfb1ecead3ba schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
116 schema:name Artificial Intelligence and Image Processing
117 rdf:type schema:DefinedTerm
118 sg:journal.1024249 schema:issn 1471-2148
119 schema:name BMC Evolutionary Biology
120 rdf:type schema:Periodical
121 sg:person.01270054227.80 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
122 schema:familyName Åkerborg
123 schema:givenName Örjan
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270054227.80
125 rdf:type schema:Person
126 sg:person.01336167427.24 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
127 schema:familyName Sennblad
128 schema:givenName Bengt
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336167427.24
130 rdf:type schema:Person
131 sg:person.0611475642.77 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
132 schema:familyName Lagergren
133 schema:givenName Jens
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611475642.77
135 rdf:type schema:Person
136 sg:pub.10.1007/bf01734359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065382
137 https://doi.org/10.1007/bf01734359
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf02338839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024828777
140 https://doi.org/10.1007/bf02338839
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/46536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010834417
143 https://doi.org/10.1038/46536
144 rdf:type schema:CreativeWork
145 sg:pub.10.1111/j.1601-5223.2000.00217.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030937821
146 https://doi.org/10.1111/j.1601-5223.2000.00217.x
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0047-2484(89)90075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020765569
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/b978-1-4832-2734-4.50017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032138540
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180325
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1046/j.1365-294x.2004.02106.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029726100
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/01621459.2000.10474227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305721
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/10635150290102375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369289
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/10635150390235520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369386
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/10635150590945313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369574
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/10635150590947311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369586
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/10635150701420643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369696
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/btg1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050174051
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/molbev/msj024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044862822
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/molbev/msm193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000129938
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/oxfordjournals.molbev.a003811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023974539
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/oxfordjournals.molbev.a003974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022948655
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/oxfordjournals.molbev.a025731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031295681
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/oxfordjournals.molbev.a025811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016347110
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/oxfordjournals.molbev.a025892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458280
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/oxfordjournals.molbev.a026389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002608520
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/j.0006-341x.1999.00001.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041443560
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1145/967900.967940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022010979
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/974614.974657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027523619
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1214/ss/1177011136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029488311
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1371/journal.pbio.0040088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037373684
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
197 schema:name Stockholm Bioinformatics Centre (SBC), Albanova, Stockholm University, SE-10691, Stockholm, Sweden
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.5037.1 schema:alternateName Royal Institute of Technology
200 schema:name School for Computer Science and Communication (CSC), Royal Institute of Technology (KTH), SE-10044, Stockholm, Sweden
201 Stockholm Bioinformatics Centre (SBC), Albanova, Stockholm University, SE-10691, Stockholm, Sweden
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...