BEAST: Bayesian evolutionary analysis by sampling trees View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Alexei J Drummond, Andrew Rambaut

ABSTRACT

BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. RESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. CONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis. More... »

PAGES

214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-7-214

DOI

http://dx.doi.org/10.1186/1471-2148-7-214

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010584451

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17996036


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Auckland", 
          "id": "https://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Bioinformatics Institute, University of Auckland, Auckland, New Zealand", 
            "Department of Computer Science, University of Auckland, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drummond", 
        "givenName": "Alexei J", 
        "id": "sg:person.012156413402.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012156413402.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rambaut", 
        "givenName": "Andrew", 
        "id": "sg:person.0633743356.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633743356.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002608520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003359288", 
          "https://doi.org/10.1007/bf02101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003359288", 
          "https://doi.org/10.1007/bf02101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.63.4.1088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007229649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.026666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008155407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.026666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008155407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(82)90011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008555201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013934757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015458280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mpev.1997.0452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016563959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1994.0079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017754347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019183396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022948655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msj021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023974539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.8.754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027697537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031295681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(03)00216-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032712558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(03)00216-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032712558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033131334", 
          "https://doi.org/10.1186/1471-2105-6-83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037373684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037373684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038163150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038642758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039008589", 
          "https://doi.org/10.1007/bf02101694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039008589", 
          "https://doi.org/10.1007/bf02101694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msi103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039084795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.4.395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042779067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00160154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047784476", 
          "https://doi.org/10.1007/bf00160154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02193625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049370355", 
          "https://doi.org/10.1007/bf02193625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02193625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049370355", 
          "https://doi.org/10.1007/bf02193625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052641160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150290102456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150490522629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150590947041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1101074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062450860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.172.3988.1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062502913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074556906", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075091356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075335901", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082454019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082587005"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented.\nRESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license.\nCONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2148-7-214", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "BEAST: Bayesian evolutionary analysis by sampling trees", 
    "pagination": "214", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "326ccca0a6c50b875ea6fe3450a4baaa94efd84e923dc3dd044cc6fb6c019740"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17996036"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-7-214"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010584451"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-7-214", 
      "https://app.dimensions.ai/details/publication/pub.1010584451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2148-7-214"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      77 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-7-214 schema:about N09dd04334c9f4c7bb18520f971954439
2 N20c8523c755c4e2a94e107a0fd6edb8e
3 N26f6527123ee444cb3b1b906516afff4
4 N497b72cfeb764aa9bec31fe3111a593e
5 N70e2a77472b047879ed97a1f4902ff77
6 N727b548bf90e42f0b8c23b3079e5c668
7 Nc982cb26bdb345f3837aaaa8773444e0
8 Necf5b3a6061846c5a26a4ff024c7c1b9
9 Nfbc817112e8c4faea6b287ec04dbfdc4
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author N58a4cec0483c4b13aa71235c605b1927
13 schema:citation sg:pub.10.1007/bf00160154
14 sg:pub.10.1007/bf02101694
15 sg:pub.10.1007/bf02101990
16 sg:pub.10.1007/bf02193625
17 sg:pub.10.1186/1471-2105-6-83
18 https://app.dimensions.ai/details/publication/pub.1074556906
19 https://app.dimensions.ai/details/publication/pub.1075091356
20 https://app.dimensions.ai/details/publication/pub.1075335901
21 https://doi.org/10.1006/mpev.1997.0452
22 https://doi.org/10.1016/0304-4149(82)90011-4
23 https://doi.org/10.1016/s0169-5347(03)00216-7
24 https://doi.org/10.1063/1.1699114
25 https://doi.org/10.1073/pnas.63.4.1088
26 https://doi.org/10.1080/10635150290102456
27 https://doi.org/10.1080/10635150490522629
28 https://doi.org/10.1080/10635150590947041
29 https://doi.org/10.1093/bioinformatics/16.4.395
30 https://doi.org/10.1093/bioinformatics/17.8.754
31 https://doi.org/10.1093/bioinformatics/btk051
32 https://doi.org/10.1093/bioinformatics/btl175
33 https://doi.org/10.1093/biomet/57.1.97
34 https://doi.org/10.1093/molbev/msg043
35 https://doi.org/10.1093/molbev/msg226
36 https://doi.org/10.1093/molbev/msi103
37 https://doi.org/10.1093/molbev/msj021
38 https://doi.org/10.1093/oxfordjournals.molbev.a003811
39 https://doi.org/10.1093/oxfordjournals.molbev.a003974
40 https://doi.org/10.1093/oxfordjournals.molbev.a025731
41 https://doi.org/10.1093/oxfordjournals.molbev.a025892
42 https://doi.org/10.1093/oxfordjournals.molbev.a025940
43 https://doi.org/10.1093/oxfordjournals.molbev.a026389
44 https://doi.org/10.1093/oxfordjournals.molbev.a040153
45 https://doi.org/10.1093/oxfordjournals.molbev.a040235
46 https://doi.org/10.1098/rstb.1994.0079
47 https://doi.org/10.1111/1467-985x.00264
48 https://doi.org/10.1126/science.1101074
49 https://doi.org/10.1126/science.172.3988.1089
50 https://doi.org/10.1371/journal.pbio.0040088
51 https://doi.org/10.1534/genetics.104.026666
52 schema:datePublished 2007-12
53 schema:datePublishedReg 2007-12-01
54 schema:description BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. RESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. CONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N1641f3814f5b4a219b46053331ce275e
59 Naa0906e665eb4a7c8f64dc9c750a1150
60 sg:journal.1024249
61 schema:name BEAST: Bayesian evolutionary analysis by sampling trees
62 schema:pagination 214
63 schema:productId N0a75ebba49d348b6a7748e9fd74b47e2
64 N70e3abc508874b5693b674354bd91651
65 N76aa81d470e04f30b8312da436035899
66 N7d70c61e19e84a49bfe2d29b41c5a5df
67 Naac43b4e6ef54fe883b483798e625d3c
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010584451
69 https://doi.org/10.1186/1471-2148-7-214
70 schema:sdDatePublished 2019-04-10T14:07
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N95c5fe2bc6b945779c137632a53f7e4a
73 schema:url http://link.springer.com/10.1186%2F1471-2148-7-214
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N09dd04334c9f4c7bb18520f971954439 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Models, Genetic
79 rdf:type schema:DefinedTerm
80 N0a75ebba49d348b6a7748e9fd74b47e2 schema:name nlm_unique_id
81 schema:value 100966975
82 rdf:type schema:PropertyValue
83 N1641f3814f5b4a219b46053331ce275e schema:volumeNumber 7
84 rdf:type schema:PublicationVolume
85 N20c8523c755c4e2a94e107a0fd6edb8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Software
87 rdf:type schema:DefinedTerm
88 N26f6527123ee444cb3b1b906516afff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Computational Biology
90 rdf:type schema:DefinedTerm
91 N497b72cfeb764aa9bec31fe3111a593e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Bayes Theorem
93 rdf:type schema:DefinedTerm
94 N58a4cec0483c4b13aa71235c605b1927 rdf:first sg:person.012156413402.23
95 rdf:rest Nce98dde661e84d838f8465324b7fa8eb
96 N70e2a77472b047879ed97a1f4902ff77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Evolution, Molecular
98 rdf:type schema:DefinedTerm
99 N70e3abc508874b5693b674354bd91651 schema:name dimensions_id
100 schema:value pub.1010584451
101 rdf:type schema:PropertyValue
102 N727b548bf90e42f0b8c23b3079e5c668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Sequence Analysis, DNA
104 rdf:type schema:DefinedTerm
105 N76aa81d470e04f30b8312da436035899 schema:name pubmed_id
106 schema:value 17996036
107 rdf:type schema:PropertyValue
108 N7d70c61e19e84a49bfe2d29b41c5a5df schema:name readcube_id
109 schema:value 326ccca0a6c50b875ea6fe3450a4baaa94efd84e923dc3dd044cc6fb6c019740
110 rdf:type schema:PropertyValue
111 N95c5fe2bc6b945779c137632a53f7e4a schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Naa0906e665eb4a7c8f64dc9c750a1150 schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 Naac43b4e6ef54fe883b483798e625d3c schema:name doi
116 schema:value 10.1186/1471-2148-7-214
117 rdf:type schema:PropertyValue
118 Nc982cb26bdb345f3837aaaa8773444e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Models, Statistical
120 rdf:type schema:DefinedTerm
121 Nce98dde661e84d838f8465324b7fa8eb rdf:first sg:person.0633743356.16
122 rdf:rest rdf:nil
123 Necf5b3a6061846c5a26a4ff024c7c1b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Phylogeny
125 rdf:type schema:DefinedTerm
126 Nfbc817112e8c4faea6b287ec04dbfdc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Computer Simulation
128 rdf:type schema:DefinedTerm
129 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
130 schema:name Mathematical Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
133 schema:name Statistics
134 rdf:type schema:DefinedTerm
135 sg:journal.1024249 schema:issn 1471-2148
136 schema:name BMC Evolutionary Biology
137 rdf:type schema:Periodical
138 sg:person.012156413402.23 schema:affiliation https://www.grid.ac/institutes/grid.9654.e
139 schema:familyName Drummond
140 schema:givenName Alexei J
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012156413402.23
142 rdf:type schema:Person
143 sg:person.0633743356.16 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
144 schema:familyName Rambaut
145 schema:givenName Andrew
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633743356.16
147 rdf:type schema:Person
148 sg:pub.10.1007/bf00160154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784476
149 https://doi.org/10.1007/bf00160154
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf02101694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039008589
152 https://doi.org/10.1007/bf02101694
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf02101990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003359288
155 https://doi.org/10.1007/bf02101990
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf02193625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049370355
158 https://doi.org/10.1007/bf02193625
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2105-6-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033131334
161 https://doi.org/10.1186/1471-2105-6-83
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1074556906 schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1075091356 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1075335901 schema:CreativeWork
166 https://doi.org/10.1006/mpev.1997.0452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016563959
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0304-4149(82)90011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008555201
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0169-5347(03)00216-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032712558
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1073/pnas.63.4.1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007229649
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/10635150290102456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369297
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/10635150490522629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369480
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/10635150590947041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369580
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/16.4.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042779067
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/bioinformatics/17.8.754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027697537
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/bioinformatics/btk051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183396
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/bioinformatics/btl175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013934757
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/molbev/msg043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038642758
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/molbev/msg226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333190
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/molbev/msi103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039084795
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/molbev/msj021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022959383
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/oxfordjournals.molbev.a003811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023974539
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/oxfordjournals.molbev.a003974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022948655
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/oxfordjournals.molbev.a025731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031295681
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/oxfordjournals.molbev.a025892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458280
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/oxfordjournals.molbev.a025940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052641160
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/oxfordjournals.molbev.a026389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002608520
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/oxfordjournals.molbev.a040153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082587005
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/oxfordjournals.molbev.a040235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082454019
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1098/rstb.1994.0079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017754347
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/1467-985x.00264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038163150
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.1101074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062450860
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.172.3988.1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062502913
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pbio.0040088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037373684
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1534/genetics.104.026666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008155407
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
229 schema:name Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.9654.e schema:alternateName University of Auckland
232 schema:name Bioinformatics Institute, University of Auckland, Auckland, New Zealand
233 Department of Computer Science, University of Auckland, Auckland, New Zealand
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...