BEAST: Bayesian evolutionary analysis by sampling trees View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Alexei J Drummond, Andrew Rambaut

ABSTRACT

BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. RESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. CONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis. More... »

PAGES

214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-7-214

DOI

http://dx.doi.org/10.1186/1471-2148-7-214

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010584451

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17996036


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Auckland", 
          "id": "https://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Bioinformatics Institute, University of Auckland, Auckland, New Zealand", 
            "Department of Computer Science, University of Auckland, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drummond", 
        "givenName": "Alexei J", 
        "id": "sg:person.012156413402.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012156413402.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rambaut", 
        "givenName": "Andrew", 
        "id": "sg:person.0633743356.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633743356.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002608520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003359288", 
          "https://doi.org/10.1007/bf02101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003359288", 
          "https://doi.org/10.1007/bf02101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.63.4.1088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007229649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.026666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008155407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.026666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008155407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(82)90011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008555201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013934757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015458280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mpev.1997.0452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016563959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1994.0079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017754347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019183396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022948655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msj021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023974539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.8.754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027697537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031295681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(03)00216-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032712558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(03)00216-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032712558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033131334", 
          "https://doi.org/10.1186/1471-2105-6-83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037373684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037373684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038163150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038642758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039008589", 
          "https://doi.org/10.1007/bf02101694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039008589", 
          "https://doi.org/10.1007/bf02101694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msi103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039084795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.4.395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042779067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00160154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047784476", 
          "https://doi.org/10.1007/bf00160154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02193625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049370355", 
          "https://doi.org/10.1007/bf02193625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02193625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049370355", 
          "https://doi.org/10.1007/bf02193625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052641160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150290102456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150490522629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150590947041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1101074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062450860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.172.3988.1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062502913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074556906", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075091356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075335901", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082454019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082587005"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented.\nRESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license.\nCONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2148-7-214", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "BEAST: Bayesian evolutionary analysis by sampling trees", 
    "pagination": "214", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "326ccca0a6c50b875ea6fe3450a4baaa94efd84e923dc3dd044cc6fb6c019740"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17996036"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-7-214"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010584451"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-7-214", 
      "https://app.dimensions.ai/details/publication/pub.1010584451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2148-7-214"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      77 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-7-214 schema:about N19ce99225b1d4d779a6f7398b20755c0
2 N1f6c5f21f4c44774a246bb6f34265d37
3 N3c16441539874f008d534a1495347a4d
4 N3eb39306f1ad4ac7bf532364babc7596
5 N56144d32812049c4888bd9bda7bc6ca5
6 N8404c508dc664e38b60bbbfb809fe956
7 Nb493464596e1451f92a7a7c93bc0f80e
8 Nbdfa00626e674fb2a9e76db4eb70c100
9 Ne867d979c01d435293ad99047342b996
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author N2e81e46da4c64c19aee801c42678dc62
13 schema:citation sg:pub.10.1007/bf00160154
14 sg:pub.10.1007/bf02101694
15 sg:pub.10.1007/bf02101990
16 sg:pub.10.1007/bf02193625
17 sg:pub.10.1186/1471-2105-6-83
18 https://app.dimensions.ai/details/publication/pub.1074556906
19 https://app.dimensions.ai/details/publication/pub.1075091356
20 https://app.dimensions.ai/details/publication/pub.1075335901
21 https://doi.org/10.1006/mpev.1997.0452
22 https://doi.org/10.1016/0304-4149(82)90011-4
23 https://doi.org/10.1016/s0169-5347(03)00216-7
24 https://doi.org/10.1063/1.1699114
25 https://doi.org/10.1073/pnas.63.4.1088
26 https://doi.org/10.1080/10635150290102456
27 https://doi.org/10.1080/10635150490522629
28 https://doi.org/10.1080/10635150590947041
29 https://doi.org/10.1093/bioinformatics/16.4.395
30 https://doi.org/10.1093/bioinformatics/17.8.754
31 https://doi.org/10.1093/bioinformatics/btk051
32 https://doi.org/10.1093/bioinformatics/btl175
33 https://doi.org/10.1093/biomet/57.1.97
34 https://doi.org/10.1093/molbev/msg043
35 https://doi.org/10.1093/molbev/msg226
36 https://doi.org/10.1093/molbev/msi103
37 https://doi.org/10.1093/molbev/msj021
38 https://doi.org/10.1093/oxfordjournals.molbev.a003811
39 https://doi.org/10.1093/oxfordjournals.molbev.a003974
40 https://doi.org/10.1093/oxfordjournals.molbev.a025731
41 https://doi.org/10.1093/oxfordjournals.molbev.a025892
42 https://doi.org/10.1093/oxfordjournals.molbev.a025940
43 https://doi.org/10.1093/oxfordjournals.molbev.a026389
44 https://doi.org/10.1093/oxfordjournals.molbev.a040153
45 https://doi.org/10.1093/oxfordjournals.molbev.a040235
46 https://doi.org/10.1098/rstb.1994.0079
47 https://doi.org/10.1111/1467-985x.00264
48 https://doi.org/10.1126/science.1101074
49 https://doi.org/10.1126/science.172.3988.1089
50 https://doi.org/10.1371/journal.pbio.0040088
51 https://doi.org/10.1534/genetics.104.026666
52 schema:datePublished 2007-12
53 schema:datePublishedReg 2007-12-01
54 schema:description BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. RESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. CONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N55579a9b59f04cdaa27986fe1ed4575b
59 N849284fed571406b87e2c0fa6985f3fd
60 sg:journal.1024249
61 schema:name BEAST: Bayesian evolutionary analysis by sampling trees
62 schema:pagination 214
63 schema:productId N0d61641eee6f48cb89feaefa596cadc0
64 N2b7c479482ef483a8930aeb65a8ee419
65 N7dae977879fe483f96df40314a51fdf1
66 N9e6fcb214b5a4aaabb83cd1b44cf8e9b
67 Ncf7dd1da7a6a4abf9deabfd15f486ee2
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010584451
69 https://doi.org/10.1186/1471-2148-7-214
70 schema:sdDatePublished 2019-04-10T14:07
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N3942e57a525e4308a9e3933ce6466fb2
73 schema:url http://link.springer.com/10.1186%2F1471-2148-7-214
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0d61641eee6f48cb89feaefa596cadc0 schema:name dimensions_id
78 schema:value pub.1010584451
79 rdf:type schema:PropertyValue
80 N19ce99225b1d4d779a6f7398b20755c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Computer Simulation
82 rdf:type schema:DefinedTerm
83 N1f6c5f21f4c44774a246bb6f34265d37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Computational Biology
85 rdf:type schema:DefinedTerm
86 N2b7c479482ef483a8930aeb65a8ee419 schema:name doi
87 schema:value 10.1186/1471-2148-7-214
88 rdf:type schema:PropertyValue
89 N2e81e46da4c64c19aee801c42678dc62 rdf:first sg:person.012156413402.23
90 rdf:rest N9e3b09effc3a4a43b275a582f8a066a5
91 N3942e57a525e4308a9e3933ce6466fb2 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N3c16441539874f008d534a1495347a4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Models, Statistical
95 rdf:type schema:DefinedTerm
96 N3eb39306f1ad4ac7bf532364babc7596 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Models, Genetic
98 rdf:type schema:DefinedTerm
99 N55579a9b59f04cdaa27986fe1ed4575b schema:volumeNumber 7
100 rdf:type schema:PublicationVolume
101 N56144d32812049c4888bd9bda7bc6ca5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Phylogeny
103 rdf:type schema:DefinedTerm
104 N7dae977879fe483f96df40314a51fdf1 schema:name nlm_unique_id
105 schema:value 100966975
106 rdf:type schema:PropertyValue
107 N8404c508dc664e38b60bbbfb809fe956 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Software
109 rdf:type schema:DefinedTerm
110 N849284fed571406b87e2c0fa6985f3fd schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N9e3b09effc3a4a43b275a582f8a066a5 rdf:first sg:person.0633743356.16
113 rdf:rest rdf:nil
114 N9e6fcb214b5a4aaabb83cd1b44cf8e9b schema:name pubmed_id
115 schema:value 17996036
116 rdf:type schema:PropertyValue
117 Nb493464596e1451f92a7a7c93bc0f80e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Sequence Analysis, DNA
119 rdf:type schema:DefinedTerm
120 Nbdfa00626e674fb2a9e76db4eb70c100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Bayes Theorem
122 rdf:type schema:DefinedTerm
123 Ncf7dd1da7a6a4abf9deabfd15f486ee2 schema:name readcube_id
124 schema:value 326ccca0a6c50b875ea6fe3450a4baaa94efd84e923dc3dd044cc6fb6c019740
125 rdf:type schema:PropertyValue
126 Ne867d979c01d435293ad99047342b996 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Evolution, Molecular
128 rdf:type schema:DefinedTerm
129 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
130 schema:name Mathematical Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
133 schema:name Statistics
134 rdf:type schema:DefinedTerm
135 sg:journal.1024249 schema:issn 1471-2148
136 schema:name BMC Evolutionary Biology
137 rdf:type schema:Periodical
138 sg:person.012156413402.23 schema:affiliation https://www.grid.ac/institutes/grid.9654.e
139 schema:familyName Drummond
140 schema:givenName Alexei J
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012156413402.23
142 rdf:type schema:Person
143 sg:person.0633743356.16 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
144 schema:familyName Rambaut
145 schema:givenName Andrew
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633743356.16
147 rdf:type schema:Person
148 sg:pub.10.1007/bf00160154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784476
149 https://doi.org/10.1007/bf00160154
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf02101694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039008589
152 https://doi.org/10.1007/bf02101694
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf02101990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003359288
155 https://doi.org/10.1007/bf02101990
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf02193625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049370355
158 https://doi.org/10.1007/bf02193625
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2105-6-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033131334
161 https://doi.org/10.1186/1471-2105-6-83
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1074556906 schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1075091356 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1075335901 schema:CreativeWork
166 https://doi.org/10.1006/mpev.1997.0452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016563959
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0304-4149(82)90011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008555201
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0169-5347(03)00216-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032712558
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1073/pnas.63.4.1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007229649
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/10635150290102456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369297
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/10635150490522629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369480
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/10635150590947041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369580
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/16.4.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042779067
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/bioinformatics/17.8.754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027697537
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/bioinformatics/btk051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183396
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/bioinformatics/btl175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013934757
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/molbev/msg043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038642758
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/molbev/msg226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333190
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/molbev/msi103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039084795
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/molbev/msj021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022959383
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/oxfordjournals.molbev.a003811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023974539
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/oxfordjournals.molbev.a003974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022948655
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/oxfordjournals.molbev.a025731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031295681
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/oxfordjournals.molbev.a025892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458280
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/oxfordjournals.molbev.a025940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052641160
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/oxfordjournals.molbev.a026389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002608520
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/oxfordjournals.molbev.a040153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082587005
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/oxfordjournals.molbev.a040235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082454019
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1098/rstb.1994.0079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017754347
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/1467-985x.00264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038163150
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.1101074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062450860
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.172.3988.1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062502913
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pbio.0040088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037373684
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1534/genetics.104.026666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008155407
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
229 schema:name Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.9654.e schema:alternateName University of Auckland
232 schema:name Bioinformatics Institute, University of Auckland, Auckland, New Zealand
233 Department of Computer Science, University of Auckland, Auckland, New Zealand
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...