BEAST: Bayesian evolutionary analysis by sampling trees View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-11-08

AUTHORS

Alexei J Drummond, Andrew Rambaut

ABSTRACT

BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. RESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. CONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis. More... »

PAGES

214-214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-7-214

DOI

http://dx.doi.org/10.1186/1471-2148-7-214

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010584451

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17996036


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Auckland, Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Bioinformatics Institute, University of Auckland, Auckland, New Zealand", 
            "Department of Computer Science, University of Auckland, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drummond", 
        "givenName": "Alexei J", 
        "id": "sg:person.012156413402.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012156413402.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rambaut", 
        "givenName": "Andrew", 
        "id": "sg:person.0633743356.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633743356.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00160154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047784476", 
          "https://doi.org/10.1007/bf00160154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039008589", 
          "https://doi.org/10.1007/bf02101694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033131334", 
          "https://doi.org/10.1186/1471-2105-6-83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003359288", 
          "https://doi.org/10.1007/bf02101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02193625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049370355", 
          "https://doi.org/10.1007/bf02193625"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11-08", 
    "datePublishedReg": "2007-11-08", 
    "description": "BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented.\nRESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license.\nCONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2148-7-214", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "molecular sequence variation", 
      "evolutionary analysis", 
      "sequence evolution", 
      "sequence data", 
      "sequence variation", 
      "popular stochastic models", 
      "molecular population genetics", 
      "protein sequence evolution", 
      "multiple sequence alignment", 
      "Bayesian evolutionary analysis", 
      "coalescent analyses", 
      "statistical alignment", 
      "population genetics", 
      "evolutionary tree", 
      "phylogenetic inference", 
      "stochastic model", 
      "prior distribution", 
      "molecular sequences", 
      "statistical methods", 
      "sequence alignment", 
      "Bayesian analysis", 
      "probabilistic model", 
      "tree-based models", 
      "GNU LGPL license", 
      "analysis package", 
      "MCMC", 
      "trees", 
      "phylogenetics", 
      "LGPL license", 
      "new model", 
      "model", 
      "genetics", 
      "DNA", 
      "large number", 
      "evolution", 
      "sequence", 
      "inference", 
      "package", 
      "wide range", 
      "code", 
      "source code", 
      "variation", 
      "class", 
      "flexible software architecture", 
      "alignment", 
      "beast", 
      "analysis", 
      "lines", 
      "distribution", 
      "further development", 
      "number", 
      "development", 
      "data", 
      "design", 
      "consist", 
      "range", 
      "resources", 
      "architecture", 
      "use", 
      "Java source code", 
      "software architecture", 
      "method", 
      "license", 
      "options", 
      "enterprises", 
      "statistical enterprise", 
      "species sequence data", 
      "version 1.4.6 consists", 
      "parametric coalescent analysis", 
      "relaxed clock phylogenetics", 
      "clock phylogenetics", 
      "non-contemporaneous sequence data", 
      "BEAST source code", 
      "flexible evolutionary analysis package", 
      "evolutionary analysis package"
    ], 
    "name": "BEAST: Bayesian evolutionary analysis by sampling trees", 
    "pagination": "214-214", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010584451"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-7-214"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17996036"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-7-214", 
      "https://app.dimensions.ai/details/publication/pub.1010584451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2148-7-214"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-7-214'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      22 PREDICATES      115 URIs      102 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-7-214 schema:about N31fc605e4f3041b9a982d02923fe736a
2 N38319af3319246cb8afec42d421b6a6a
3 N39840aa2c9c7499e896e424cd802fd73
4 N7e7f3a8eb3a24206ae3fcba470afb32d
5 N912c31dba8b5427b84cdf675c9b11e54
6 Na786c51305d14555a5c5ba6b7aecfc09
7 Nc7d5861ce79d487f9f6b78e6e53b9f7e
8 Ned4aea575b184fa0b77c68df01b8e9ec
9 Nfdb612a0f73c435db6f13aa304bb99ab
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N9d4e52b7eba04efc8d52d0a102ca8bd8
13 schema:citation sg:pub.10.1007/bf00160154
14 sg:pub.10.1007/bf02101694
15 sg:pub.10.1007/bf02101990
16 sg:pub.10.1007/bf02193625
17 sg:pub.10.1186/1471-2105-6-83
18 schema:datePublished 2007-11-08
19 schema:datePublishedReg 2007-11-08
20 schema:description BACKGROUND: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. RESULTS: BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. CONCLUSION: BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N77ed1f61f3aa45e0ba620d48a692e419
25 Ndc58620f14d24aa88739330ec9d5fece
26 sg:journal.1024249
27 schema:keywords BEAST source code
28 Bayesian analysis
29 Bayesian evolutionary analysis
30 DNA
31 GNU LGPL license
32 Java source code
33 LGPL license
34 MCMC
35 alignment
36 analysis
37 analysis package
38 architecture
39 beast
40 class
41 clock phylogenetics
42 coalescent analyses
43 code
44 consist
45 data
46 design
47 development
48 distribution
49 enterprises
50 evolution
51 evolutionary analysis
52 evolutionary analysis package
53 evolutionary tree
54 flexible evolutionary analysis package
55 flexible software architecture
56 further development
57 genetics
58 inference
59 large number
60 license
61 lines
62 method
63 model
64 molecular population genetics
65 molecular sequence variation
66 molecular sequences
67 multiple sequence alignment
68 new model
69 non-contemporaneous sequence data
70 number
71 options
72 package
73 parametric coalescent analysis
74 phylogenetic inference
75 phylogenetics
76 popular stochastic models
77 population genetics
78 prior distribution
79 probabilistic model
80 protein sequence evolution
81 range
82 relaxed clock phylogenetics
83 resources
84 sequence
85 sequence alignment
86 sequence data
87 sequence evolution
88 sequence variation
89 software architecture
90 source code
91 species sequence data
92 statistical alignment
93 statistical enterprise
94 statistical methods
95 stochastic model
96 tree-based models
97 trees
98 use
99 variation
100 version 1.4.6 consists
101 wide range
102 schema:name BEAST: Bayesian evolutionary analysis by sampling trees
103 schema:pagination 214-214
104 schema:productId N5d7d8cf6a8f04c1fa6cceaca65c096c5
105 N6b11223667b94885a71fbb6a620c7f20
106 Na1f9644903ea48b8bd62f2f310eddd9c
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010584451
108 https://doi.org/10.1186/1471-2148-7-214
109 schema:sdDatePublished 2021-12-01T19:19
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N489b49b6551644439722c707f8252352
112 schema:url https://doi.org/10.1186/1471-2148-7-214
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N31fc605e4f3041b9a982d02923fe736a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Bayes Theorem
118 rdf:type schema:DefinedTerm
119 N38319af3319246cb8afec42d421b6a6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Sequence Analysis, DNA
121 rdf:type schema:DefinedTerm
122 N39840aa2c9c7499e896e424cd802fd73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Models, Genetic
124 rdf:type schema:DefinedTerm
125 N489b49b6551644439722c707f8252352 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 N557a2f9746bc4a029bfe45d4dfa7dd9e rdf:first sg:person.0633743356.16
128 rdf:rest rdf:nil
129 N5d7d8cf6a8f04c1fa6cceaca65c096c5 schema:name pubmed_id
130 schema:value 17996036
131 rdf:type schema:PropertyValue
132 N6b11223667b94885a71fbb6a620c7f20 schema:name dimensions_id
133 schema:value pub.1010584451
134 rdf:type schema:PropertyValue
135 N77ed1f61f3aa45e0ba620d48a692e419 schema:issueNumber 1
136 rdf:type schema:PublicationIssue
137 N7e7f3a8eb3a24206ae3fcba470afb32d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Computational Biology
139 rdf:type schema:DefinedTerm
140 N912c31dba8b5427b84cdf675c9b11e54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Models, Statistical
142 rdf:type schema:DefinedTerm
143 N9d4e52b7eba04efc8d52d0a102ca8bd8 rdf:first sg:person.012156413402.23
144 rdf:rest N557a2f9746bc4a029bfe45d4dfa7dd9e
145 Na1f9644903ea48b8bd62f2f310eddd9c schema:name doi
146 schema:value 10.1186/1471-2148-7-214
147 rdf:type schema:PropertyValue
148 Na786c51305d14555a5c5ba6b7aecfc09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Software
150 rdf:type schema:DefinedTerm
151 Nc7d5861ce79d487f9f6b78e6e53b9f7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Computer Simulation
153 rdf:type schema:DefinedTerm
154 Ndc58620f14d24aa88739330ec9d5fece schema:volumeNumber 7
155 rdf:type schema:PublicationVolume
156 Ned4aea575b184fa0b77c68df01b8e9ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Phylogeny
158 rdf:type schema:DefinedTerm
159 Nfdb612a0f73c435db6f13aa304bb99ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Evolution, Molecular
161 rdf:type schema:DefinedTerm
162 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
163 schema:name Biological Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
166 schema:name Genetics
167 rdf:type schema:DefinedTerm
168 sg:journal.1024249 schema:issn 1471-2148
169 schema:name BMC Evolutionary Biology
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.012156413402.23 schema:affiliation grid-institutes:grid.9654.e
173 schema:familyName Drummond
174 schema:givenName Alexei J
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012156413402.23
176 rdf:type schema:Person
177 sg:person.0633743356.16 schema:affiliation grid-institutes:grid.4305.2
178 schema:familyName Rambaut
179 schema:givenName Andrew
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633743356.16
181 rdf:type schema:Person
182 sg:pub.10.1007/bf00160154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784476
183 https://doi.org/10.1007/bf00160154
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/bf02101694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039008589
186 https://doi.org/10.1007/bf02101694
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/bf02101990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003359288
189 https://doi.org/10.1007/bf02101990
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf02193625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049370355
192 https://doi.org/10.1007/bf02193625
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-6-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033131334
195 https://doi.org/10.1186/1471-2105-6-83
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.4305.2 schema:alternateName Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
198 schema:name Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
199 rdf:type schema:Organization
200 grid-institutes:grid.9654.e schema:alternateName Department of Computer Science, University of Auckland, Auckland, New Zealand
201 schema:name Bioinformatics Institute, University of Auckland, Auckland, New Zealand
202 Department of Computer Science, University of Auckland, Auckland, New Zealand
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...