Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Rainer Opgen-Rhein, Ludwig Fahrmeir, Korbinian Strimmer

ABSTRACT

BACKGROUND: Coalescent theory is a general framework to model genetic variation in a population. Specifically, it allows inference about population parameters from sampled DNA sequences. However, most currently employed variants of coalescent theory only consider very simple demographic scenarios of population size changes, such as exponential growth. RESULTS: Here we develop a coalescent approach that allows Bayesian non-parametric estimation of the demographic history using genealogies reconstructed from sampled DNA sequences. In this framework inference and model selection is done using reversible jump Markov chain Monte Carlo (MCMC). This method is computationally efficient and overcomes the limitations of related non-parametric approaches such as the skyline plot. We validate the approach using simulated data. Subsequently, we reanalyze HIV-1 sequence data from Central Africa and Hepatitis C virus (HCV) data from Egypt. CONCLUSIONS: The new method provides a Bayesian procedure for non-parametric estimation of the demographic history. By construction it additionally provides confidence limits and may be used jointly with other MCMC-based coalescent approaches. More... »

PAGES

6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-5-6

DOI

http://dx.doi.org/10.1186/1471-2148-5-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006664573

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15663782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HIV-1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepacivirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, University of Munich, D-80539, Ludwigstr. 33, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Opgen-Rhein", 
        "givenName": "Rainer", 
        "id": "sg:person.0727027436.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727027436.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, University of Munich, D-80539, Ludwigstr. 33, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrmeir", 
        "givenName": "Ludwig", 
        "id": "sg:person.0661512671.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, University of Munich, D-80539, Ludwigstr. 33, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strimmer", 
        "givenName": "Korbinian", 
        "id": "sg:person.01043623604.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043623604.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rstb.2001.0859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000679155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.10.5456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001489831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004963596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-4-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006216542", 
          "https://doi.org/10.1186/1471-2148-4-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/315786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006651556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(82)90011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008555201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-7-214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010584451", 
          "https://doi.org/10.1186/1471-2148-7-214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35074179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013541746", 
          "https://doi.org/10.1038/35074179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35074179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013541746", 
          "https://doi.org/10.1038/35074179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017425948", 
          "https://doi.org/10.1038/nrg795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017425948", 
          "https://doi.org/10.1038/nrg795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1994.0079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017754347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018314149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-003-2541-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020163253", 
          "https://doi.org/10.1007/s00239-003-2541-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020397650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.74.22.10498-10507.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031500459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038642758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200034446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041457488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ge.29.120195.002153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043345559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048258161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-002-0180-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048535051", 
          "https://doi.org/10.1007/s00285-002-0180-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051607942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672300030354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053910293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672300030354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053910293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/82.4.711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3213548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070227737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074662818", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075091356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075335901", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077403733", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082387347", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083259845", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Coalescent theory is a general framework to model genetic variation in a population. Specifically, it allows inference about population parameters from sampled DNA sequences. However, most currently employed variants of coalescent theory only consider very simple demographic scenarios of population size changes, such as exponential growth.\nRESULTS: Here we develop a coalescent approach that allows Bayesian non-parametric estimation of the demographic history using genealogies reconstructed from sampled DNA sequences. In this framework inference and model selection is done using reversible jump Markov chain Monte Carlo (MCMC). This method is computationally efficient and overcomes the limitations of related non-parametric approaches such as the skyline plot. We validate the approach using simulated data. Subsequently, we reanalyze HIV-1 sequence data from Central Africa and Hepatitis C virus (HCV) data from Egypt.\nCONCLUSIONS: The new method provides a Bayesian procedure for non-parametric estimation of the demographic history. By construction it additionally provides confidence limits and may be used jointly with other MCMC-based coalescent approaches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2148-5-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1fbedd5dc6d014d07ea8b933e8c453ba6daf398c9f1db7c53d1f3d630488caff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15663782"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-5-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006664573"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-5-6", 
      "https://app.dimensions.ai/details/publication/pub.1006664573"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2148-5-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-5-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-5-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-5-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-5-6'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      73 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-5-6 schema:about N02c5cd0b44f6473a886286a5d035fcc3
2 N0b992163f97a47e9b3b5d00a839a75a8
3 N0d8ad0cb85a34bf5be54a1b612e605ee
4 N2b3d08695a65496e9817dc99c19a3fb0
5 N370d675df15640a2aad12f2c13a2fed0
6 N3f68e174c3774e11a5a4f644a45dc551
7 N815d9d2dbf9044f682a79fdecc2a9500
8 N8465d24a52a345e69c63980f9d785d98
9 Na3302c6e70f84ecf94ca1d0680c98764
10 Na95264dd8227400ab0a5681a970d51d6
11 Nc2bb063cc2a74472bf53869e291314ef
12 Nca00eed4dcf341f7b8ec2868c90150af
13 Ne5e0f696c39a47cabcc57dffeb8a26d9
14 Necc751935bc54071a8b7bec55f7d33fa
15 Nf9a3eaa9b8f640d79e5a8475a672496a
16 anzsrc-for:01
17 anzsrc-for:0104
18 schema:author Nf031ce951111487f8fe3423253c5a747
19 schema:citation sg:pub.10.1007/s00239-003-2541-3
20 sg:pub.10.1007/s00285-002-0180-8
21 sg:pub.10.1038/35074179
22 sg:pub.10.1038/nrg795
23 sg:pub.10.1186/1471-2148-4-18
24 sg:pub.10.1186/1471-2148-7-214
25 https://app.dimensions.ai/details/publication/pub.1074662818
26 https://app.dimensions.ai/details/publication/pub.1075091356
27 https://app.dimensions.ai/details/publication/pub.1075335901
28 https://app.dimensions.ai/details/publication/pub.1077403733
29 https://app.dimensions.ai/details/publication/pub.1082387347
30 https://app.dimensions.ai/details/publication/pub.1083259845
31 https://doi.org/10.1016/0304-4149(82)90011-4
32 https://doi.org/10.1017/s0016672300030354
33 https://doi.org/10.1017/s0021900200034446
34 https://doi.org/10.1073/pnas.95.10.5456
35 https://doi.org/10.1086/315786
36 https://doi.org/10.1093/bioinformatics/btg412
37 https://doi.org/10.1093/bioinformatics/bth485
38 https://doi.org/10.1093/biomet/82.4.711
39 https://doi.org/10.1093/molbev/msg043
40 https://doi.org/10.1093/oxfordjournals.molbev.a003776
41 https://doi.org/10.1093/oxfordjournals.molbev.a026160
42 https://doi.org/10.1098/rstb.1994.0079
43 https://doi.org/10.1098/rstb.2001.0859
44 https://doi.org/10.1111/1467-9868.00254
45 https://doi.org/10.1128/jvi.74.22.10498-10507.2000
46 https://doi.org/10.1146/annurev.ge.29.120195.002153
47 https://doi.org/10.2307/3213548
48 schema:datePublished 2005-12
49 schema:datePublishedReg 2005-12-01
50 schema:description BACKGROUND: Coalescent theory is a general framework to model genetic variation in a population. Specifically, it allows inference about population parameters from sampled DNA sequences. However, most currently employed variants of coalescent theory only consider very simple demographic scenarios of population size changes, such as exponential growth. RESULTS: Here we develop a coalescent approach that allows Bayesian non-parametric estimation of the demographic history using genealogies reconstructed from sampled DNA sequences. In this framework inference and model selection is done using reversible jump Markov chain Monte Carlo (MCMC). This method is computationally efficient and overcomes the limitations of related non-parametric approaches such as the skyline plot. We validate the approach using simulated data. Subsequently, we reanalyze HIV-1 sequence data from Central Africa and Hepatitis C virus (HCV) data from Egypt. CONCLUSIONS: The new method provides a Bayesian procedure for non-parametric estimation of the demographic history. By construction it additionally provides confidence limits and may be used jointly with other MCMC-based coalescent approaches.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N7ca3a0db67f143c0a483a2cea4324cb7
55 Nd28d62152a7944fb9bd109735714d2f4
56 sg:journal.1024249
57 schema:name Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo
58 schema:pagination 6
59 schema:productId N2ec5da77c9304daf9c5fcc7c13ac0889
60 N980d2267eea94476a37a6d4bc0db685a
61 Ncb2117b9bed143b5982332002f466859
62 Nd4c84a786ade4a598d079887a31bb84c
63 Nff9f20862b814fa8a77d3efb748de85f
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006664573
65 https://doi.org/10.1186/1471-2148-5-6
66 schema:sdDatePublished 2019-04-10T20:45
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Neb29e68b25974a75aa5412d7c0f306b2
69 schema:url http://link.springer.com/10.1186%2F1471-2148-5-6
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N02c5cd0b44f6473a886286a5d035fcc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Evolution, Molecular
75 rdf:type schema:DefinedTerm
76 N0b992163f97a47e9b3b5d00a839a75a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Markov Chains
78 rdf:type schema:DefinedTerm
79 N0d8ad0cb85a34bf5be54a1b612e605ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name HIV-1
81 rdf:type schema:DefinedTerm
82 N2b3d08695a65496e9817dc99c19a3fb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Monte Carlo Method
84 rdf:type schema:DefinedTerm
85 N2ec5da77c9304daf9c5fcc7c13ac0889 schema:name readcube_id
86 schema:value 1fbedd5dc6d014d07ea8b933e8c453ba6daf398c9f1db7c53d1f3d630488caff
87 rdf:type schema:PropertyValue
88 N370d675df15640a2aad12f2c13a2fed0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Models, Statistical
90 rdf:type schema:DefinedTerm
91 N3f68e174c3774e11a5a4f644a45dc551 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Hepacivirus
93 rdf:type schema:DefinedTerm
94 N6b7fc2a2ae0d4105978467fc8c02366c rdf:first sg:person.0661512671.36
95 rdf:rest N983f2ac719cf40f8831114413158272f
96 N7ca3a0db67f143c0a483a2cea4324cb7 schema:volumeNumber 5
97 rdf:type schema:PublicationVolume
98 N815d9d2dbf9044f682a79fdecc2a9500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name DNA
100 rdf:type schema:DefinedTerm
101 N8465d24a52a345e69c63980f9d785d98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Bayes Theorem
103 rdf:type schema:DefinedTerm
104 N980d2267eea94476a37a6d4bc0db685a schema:name pubmed_id
105 schema:value 15663782
106 rdf:type schema:PropertyValue
107 N983f2ac719cf40f8831114413158272f rdf:first sg:person.01043623604.29
108 rdf:rest rdf:nil
109 Na3302c6e70f84ecf94ca1d0680c98764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Data Interpretation, Statistical
111 rdf:type schema:DefinedTerm
112 Na95264dd8227400ab0a5681a970d51d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Genes, Viral
114 rdf:type schema:DefinedTerm
115 Nc2bb063cc2a74472bf53869e291314ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Genetic Variation
117 rdf:type schema:DefinedTerm
118 Nca00eed4dcf341f7b8ec2868c90150af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Software
120 rdf:type schema:DefinedTerm
121 Ncb2117b9bed143b5982332002f466859 schema:name dimensions_id
122 schema:value pub.1006664573
123 rdf:type schema:PropertyValue
124 Nd28d62152a7944fb9bd109735714d2f4 schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 Nd4c84a786ade4a598d079887a31bb84c schema:name doi
127 schema:value 10.1186/1471-2148-5-6
128 rdf:type schema:PropertyValue
129 Ne5e0f696c39a47cabcc57dffeb8a26d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Genetics, Population
131 rdf:type schema:DefinedTerm
132 Neb29e68b25974a75aa5412d7c0f306b2 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 Necc751935bc54071a8b7bec55f7d33fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Models, Genetic
136 rdf:type schema:DefinedTerm
137 Nf031ce951111487f8fe3423253c5a747 rdf:first sg:person.0727027436.03
138 rdf:rest N6b7fc2a2ae0d4105978467fc8c02366c
139 Nf9a3eaa9b8f640d79e5a8475a672496a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Algorithms
141 rdf:type schema:DefinedTerm
142 Nff9f20862b814fa8a77d3efb748de85f schema:name nlm_unique_id
143 schema:value 100966975
144 rdf:type schema:PropertyValue
145 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
146 schema:name Mathematical Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
149 schema:name Statistics
150 rdf:type schema:DefinedTerm
151 sg:journal.1024249 schema:issn 1471-2148
152 schema:name BMC Evolutionary Biology
153 rdf:type schema:Periodical
154 sg:person.01043623604.29 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
155 schema:familyName Strimmer
156 schema:givenName Korbinian
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043623604.29
158 rdf:type schema:Person
159 sg:person.0661512671.36 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
160 schema:familyName Fahrmeir
161 schema:givenName Ludwig
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36
163 rdf:type schema:Person
164 sg:person.0727027436.03 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
165 schema:familyName Opgen-Rhein
166 schema:givenName Rainer
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727027436.03
168 rdf:type schema:Person
169 sg:pub.10.1007/s00239-003-2541-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020163253
170 https://doi.org/10.1007/s00239-003-2541-3
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00285-002-0180-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048535051
173 https://doi.org/10.1007/s00285-002-0180-8
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/35074179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013541746
176 https://doi.org/10.1038/35074179
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nrg795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017425948
179 https://doi.org/10.1038/nrg795
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2148-4-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006216542
182 https://doi.org/10.1186/1471-2148-4-18
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2148-7-214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010584451
185 https://doi.org/10.1186/1471-2148-7-214
186 rdf:type schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1074662818 schema:CreativeWork
188 https://app.dimensions.ai/details/publication/pub.1075091356 schema:CreativeWork
189 https://app.dimensions.ai/details/publication/pub.1075335901 schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1077403733 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1082387347 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1083259845 schema:CreativeWork
193 https://doi.org/10.1016/0304-4149(82)90011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008555201
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1017/s0016672300030354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053910293
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1017/s0021900200034446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041457488
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1073/pnas.95.10.5456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001489831
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1086/315786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006651556
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/btg412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607942
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/bth485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018314149
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/biomet/82.4.711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420611
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/molbev/msg043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038642758
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/oxfordjournals.molbev.a003776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004963596
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/oxfordjournals.molbev.a026160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048258161
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1098/rstb.1994.0079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017754347
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1098/rstb.2001.0859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000679155
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/1467-9868.00254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020397650
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1128/jvi.74.22.10498-10507.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031500459
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1146/annurev.ge.29.120195.002153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043345559
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2307/3213548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070227737
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
228 schema:name Department of Statistics, University of Munich, D-80539, Ludwigstr. 33, Munich, Germany
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...