A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-11-09

AUTHORS

Fabia U Battistuzzi, Andreia Feijao, S Blair Hedges

ABSTRACT

BackgroundThe timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (~7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method.ResultsOur phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria) that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5–3.2 billion years ago (Ga) while those for archaebacteria are mostly between 3.1–4.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga), an early origin of methanogenesis (3.8–4.1 Ga), an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8–3.1 Ga, and an origin of aerobic methanotrophy 2.5–2.8 Ga.ConclusionsOur early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8–2.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically produced, were made by anoxygenic photosynthesizers. The resistance to desiccation of Terrabacteria and their elaboration of photoprotective compounds suggests that the common ancestor of this group inhabited land. If true, then oxygenic photosynthesis may owe its origin to terrestrial adaptations. More... »

PAGES

44

References to SciGraph publications

  • 2004-02. Earth's Oldest (∼ 3.5 Ga) Fossils and the `Early Eden Hypothesis': Questioning the Evidence in ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES
  • 2002-03. Questioning the evidence for Earth's oldest fossils in NATURE
  • 2003-11. Soil Drying As a Model for the Action of Stress Factors on Natural Bacterial Populations in MICROBIOLOGY
  • 2001-10-23. Genome trees constructed using five different approaches suggest new major bacterial clades in BMC ECOLOGY AND EVOLUTION
  • 1999-08. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis in NATURE
  • 2004-02-26. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox in GENOME BIOLOGY
  • 2001-01. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago in NATURE
  • 2001-09-12. A genomic timescale for the origin of eukaryotes in BMC ECOLOGY AND EVOLUTION
  • 2001-07. Universal trees based on large combined protein sequence data sets in NATURE GENETICS
  • 2004-05. Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago in NATURE
  • 2004-01-28. A molecular timescale of eukaryote evolution and the rise of complex multicellular life in BMC ECOLOGY AND EVOLUTION
  • 2003-02. Ancient horizontal gene transfer in NATURE REVIEWS GENETICS
  • 1987-11. Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes in JOURNAL OF MOLECULAR EVOLUTION
  • 2000-11. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago in NATURE
  • 2002-11. The origin and evolution of model organisms in NATURE REVIEWS GENETICS
  • 2000-10. A marine microbial consortium apparently mediating anaerobic oxidation of methane in NATURE
  • 1999-10. The Archaea Monophyly Issue: A Phylogeny of Translational Elongation Factor G(2) Sequences Inferred from an Optimized Selection of Alignment Positions in JOURNAL OF MOLECULAR EVOLUTION
  • 2002-11. The Proterozoic History and Present State of Cyanobacteria in MICROBIOLOGY
  • 2001-06. A Coupled Ecosystem-Climate Model for Predicting the Methane Concentration in the Archean Atmosphere in ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES
  • 1999-01. Genome phylogeny based on gene content in NATURE GENETICS
  • 2000-10. Resolving a methane mystery in NATURE
  • 2000-08-01. Determining the Relative Rates of Change for Prokaryotic and Eukaryotic Proteins with Anciently Duplicated Paralogs in JOURNAL OF MOLECULAR EVOLUTION
  • 2001-05. Phylogenetic Analysis of Evolutionary Relationships of the Planctomycete Division of the Domain Bacteria Based on Amino Acid Sequences of Elongation Factor Tu in JOURNAL OF MOLECULAR EVOLUTION
  • 2001-02. The habitat and nature of early life in NATURE
  • 1997-11-27. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus in NATURE
  • 2002-03. Laser–Raman imagery of Earth's earliest fossils in NATURE
  • 2003-07-23. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase in BMC ECOLOGY AND EVOLUTION
  • 1996-11. Evidence for life on Earth before 3,800 million years ago in NATURE
  • 2001-10. Defining the Core of Nontransferable Prokaryotic Genes: The Euryarchaeal Core in JOURNAL OF MOLECULAR EVOLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2148-4-44

    DOI

    http://dx.doi.org/10.1186/1471-2148-4-44

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004081702

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15535883


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomass", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Methane", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photosynthesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, 16802, University Park, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, 16802, University Park, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Battistuzzi", 
            "givenName": "Fabia U", 
            "id": "sg:person.0756020706.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756020706.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4709.a", 
              "name": [
                "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feijao", 
            "givenName": "Andreia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, 16802, University Park, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, 16802, University Park, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hedges", 
            "givenName": "S Blair", 
            "id": "sg:person.0657227305.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657227305.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/gb-2004-5-3-r17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028464475", 
              "https://doi.org/10.1186/gb-2004-5-3-r17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35059210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010826689", 
              "https://doi.org/10.1038/35059210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021415503436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024634489", 
              "https://doi.org/10.1023/a:1021415503436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041641433", 
              "https://doi.org/10.1038/nrg929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/37052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033679075", 
              "https://doi.org/10.1038/37052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049130719", 
              "https://doi.org/10.1038/nature02573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-3-18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017946378", 
              "https://doi.org/10.1186/1471-2148-3-18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-1-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035042918", 
              "https://doi.org/10.1186/1471-2148-1-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044179657", 
              "https://doi.org/10.1007/pl00006574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/5052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038696050", 
              "https://doi.org/10.1038/5052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/23005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047452854", 
              "https://doi.org/10.1038/23005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032410834", 
              "https://doi.org/10.1038/nrg1000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416076a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033091024", 
              "https://doi.org/10.1038/416076a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002390010170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003670246", 
              "https://doi.org/10.1007/s002390010170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/90129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042537539", 
              "https://doi.org/10.1038/90129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002390010078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043113870", 
              "https://doi.org/10.1007/s002390010078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35051557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036833195", 
              "https://doi.org/10.1038/35051557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02111283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026736092", 
              "https://doi.org/10.1007/bf02111283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044282621", 
              "https://doi.org/10.1038/35036572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416073a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047289177", 
              "https://doi.org/10.1038/416073a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:orig.0000009845.62244.d3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011981436", 
              "https://doi.org/10.1023/b:orig.0000009845.62244.d3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35046052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000496671", 
              "https://doi.org/10.1038/35046052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-1-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022669281", 
              "https://doi.org/10.1186/1471-2148-1-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-4-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028614061", 
              "https://doi.org/10.1186/1471-2148-4-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045991446", 
              "https://doi.org/10.1038/35036677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002390010224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051023881", 
              "https://doi.org/10.1007/s002390010224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010600401718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043699805", 
              "https://doi.org/10.1023/a:1010600401718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/384055a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014084936", 
              "https://doi.org/10.1038/384055a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:mici.0000008381.16848.8b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052271613", 
              "https://doi.org/10.1023/b:mici.0000008381.16848.8b"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-11-09", 
        "datePublishedReg": "2004-11-09", 
        "description": "BackgroundThe timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (~7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method.ResultsOur phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria) that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5\u20133.2 billion years ago (Ga) while those for archaebacteria are mostly between 3.1\u20134.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga), an early origin of methanogenesis (3.8\u20134.1 Ga), an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8\u20133.1 Ga, and an origin of aerobic methanotrophy 2.5\u20132.8 Ga.ConclusionsOur early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8\u20132.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically produced, were made by anoxygenic photosynthesizers. The resistance to desiccation of Terrabacteria and their elaboration of photoprotective compounds suggests that the common ancestor of this group inhabited land. If true, then oxygenic photosynthesis may owe its origin to terrestrial adaptations.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2148-4-44", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024249", 
            "issn": [
              "2730-7182"
            ], 
            "name": "BMC Ecology and Evolution", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "divergence times", 
          "anaerobic methanotrophy", 
          "colonization of land", 
          "horizontal gene transfer", 
          "early colonization", 
          "limited fossil record", 
          "carbon isotopic values", 
          "early origins", 
          "higher-level groupings", 
          "prokaryote evolution", 
          "deep divergence", 
          "phylogenetic results", 
          "major lineages", 
          "phylogenetic relationships", 
          "molecular clock", 
          "common ancestor", 
          "oxygenic photosynthesis", 
          "genome sequence", 
          "terrestrial adaptation", 
          "fossil record", 
          "Archean structures", 
          "time estimates", 
          "gas origin", 
          "isotopic values", 
          "early warming", 
          "phototrophy", 
          "bacterial mats", 
          "Earth's surface", 
          "anoxygenic photosynthesizers", 
          "photoprotective compounds", 
          "clock method", 
          "gene transfer", 
          "Terrabacteria", 
          "Ga.", 
          "greenhouse gas", 
          "major groups", 
          "eubacteria", 
          "lineages", 
          "colonization", 
          "methanogenesis", 
          "methanotrophy", 
          "timescales", 
          "land", 
          "carbon dioxide", 
          "sequence", 
          "origin", 
          "data sets", 
          "prokaryotes", 
          "archaebacteria", 
          "cyanobacteria", 
          "photosynthesis", 
          "ancestor", 
          "stromatolites", 
          "rocks", 
          "photosynthesizers", 
          "evolution", 
          "warming", 
          "species", 
          "protein", 
          "estimates", 
          "desiccation", 
          "divergence", 
          "potential biases", 
          "gas", 
          "good opportunity", 
          "records", 
          "methane", 
          "large number", 
          "biases", 
          "particular interest", 
          "surface", 
          "clock", 
          "adaptation", 
          "mats", 
          "insights", 
          "dioxide", 
          "rate differences", 
          "structure", 
          "resistance", 
          "time", 
          "grouping", 
          "compounds", 
          "addition", 
          "years", 
          "number", 
          "values", 
          "group", 
          "relationship", 
          "transfer", 
          "differences", 
          "set", 
          "elaboration", 
          "results", 
          "complexity", 
          "opportunities", 
          "interest", 
          "consideration", 
          "life", 
          "method"
        ], 
        "name": "A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land", 
        "pagination": "44", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004081702"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2148-4-44"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15535883"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2148-4-44", 
          "https://app.dimensions.ai/details/publication/pub.1004081702"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_389.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2148-4-44"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-4-44'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-4-44'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-4-44'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-4-44'


     

    This table displays all metadata directly associated to this object as RDF triples.

    323 TRIPLES      21 PREDICATES      161 URIs      124 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2148-4-44 schema:about N31f9a5db1ce747ac883fac531a9a6a59
    2 N574121cd5e1f47af89751444498427f8
    3 N77246b080a3148a3bf724a5b87fd4a1b
    4 N7d9b447325c448cab4e7e84261dce7c5
    5 Na09750ca302a4659bd30c710ad63e85a
    6 Nd9072aa2137345f1aabe78b103afe6e2
    7 Nf7770d49512f4c1fa034bc4e1d66ce0c
    8 Nfed35309d2e441c59e25fea968042beb
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author Nbb88f2a388a0491594c9628da58265bb
    12 schema:citation sg:pub.10.1007/bf02111283
    13 sg:pub.10.1007/pl00006574
    14 sg:pub.10.1007/s002390010078
    15 sg:pub.10.1007/s002390010170
    16 sg:pub.10.1007/s002390010224
    17 sg:pub.10.1023/a:1010600401718
    18 sg:pub.10.1023/a:1021415503436
    19 sg:pub.10.1023/b:mici.0000008381.16848.8b
    20 sg:pub.10.1023/b:orig.0000009845.62244.d3
    21 sg:pub.10.1038/23005
    22 sg:pub.10.1038/35036572
    23 sg:pub.10.1038/35036677
    24 sg:pub.10.1038/35046052
    25 sg:pub.10.1038/35051557
    26 sg:pub.10.1038/35059210
    27 sg:pub.10.1038/37052
    28 sg:pub.10.1038/384055a0
    29 sg:pub.10.1038/416073a
    30 sg:pub.10.1038/416076a
    31 sg:pub.10.1038/5052
    32 sg:pub.10.1038/90129
    33 sg:pub.10.1038/nature02573
    34 sg:pub.10.1038/nrg1000
    35 sg:pub.10.1038/nrg929
    36 sg:pub.10.1186/1471-2148-1-4
    37 sg:pub.10.1186/1471-2148-1-8
    38 sg:pub.10.1186/1471-2148-3-18
    39 sg:pub.10.1186/1471-2148-4-2
    40 sg:pub.10.1186/gb-2004-5-3-r17
    41 schema:datePublished 2004-11-09
    42 schema:datePublishedReg 2004-11-09
    43 schema:description BackgroundThe timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (~7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method.ResultsOur phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria) that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5–3.2 billion years ago (Ga) while those for archaebacteria are mostly between 3.1–4.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga), an early origin of methanogenesis (3.8–4.1 Ga), an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8–3.1 Ga, and an origin of aerobic methanotrophy 2.5–2.8 Ga.ConclusionsOur early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8–2.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically produced, were made by anoxygenic photosynthesizers. The resistance to desiccation of Terrabacteria and their elaboration of photoprotective compounds suggests that the common ancestor of this group inhabited land. If true, then oxygenic photosynthesis may owe its origin to terrestrial adaptations.
    44 schema:genre article
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N1632582705864e2494d5f3cd5fbb559d
    47 Nf68d4fb5da9941f8a8dd2c1ee04e88d4
    48 sg:journal.1024249
    49 schema:keywords Archean structures
    50 Earth's surface
    51 Ga.
    52 Terrabacteria
    53 adaptation
    54 addition
    55 anaerobic methanotrophy
    56 ancestor
    57 anoxygenic photosynthesizers
    58 archaebacteria
    59 bacterial mats
    60 biases
    61 carbon dioxide
    62 carbon isotopic values
    63 clock
    64 clock method
    65 colonization
    66 colonization of land
    67 common ancestor
    68 complexity
    69 compounds
    70 consideration
    71 cyanobacteria
    72 data sets
    73 deep divergence
    74 desiccation
    75 differences
    76 dioxide
    77 divergence
    78 divergence times
    79 early colonization
    80 early origins
    81 early warming
    82 elaboration
    83 estimates
    84 eubacteria
    85 evolution
    86 fossil record
    87 gas
    88 gas origin
    89 gene transfer
    90 genome sequence
    91 good opportunity
    92 greenhouse gas
    93 group
    94 grouping
    95 higher-level groupings
    96 horizontal gene transfer
    97 insights
    98 interest
    99 isotopic values
    100 land
    101 large number
    102 life
    103 limited fossil record
    104 lineages
    105 major groups
    106 major lineages
    107 mats
    108 methane
    109 methanogenesis
    110 methanotrophy
    111 method
    112 molecular clock
    113 number
    114 opportunities
    115 origin
    116 oxygenic photosynthesis
    117 particular interest
    118 photoprotective compounds
    119 photosynthesis
    120 photosynthesizers
    121 phototrophy
    122 phylogenetic relationships
    123 phylogenetic results
    124 potential biases
    125 prokaryote evolution
    126 prokaryotes
    127 protein
    128 rate differences
    129 records
    130 relationship
    131 resistance
    132 results
    133 rocks
    134 sequence
    135 set
    136 species
    137 stromatolites
    138 structure
    139 surface
    140 terrestrial adaptation
    141 time
    142 time estimates
    143 timescales
    144 transfer
    145 values
    146 warming
    147 years
    148 schema:name A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land
    149 schema:pagination 44
    150 schema:productId N7b441a99c01e48a5ba68a79294d81209
    151 N7bf58093caf64beda6fa3ea96daca6ee
    152 Nded9d42f18454cc4abb0cb9bec8fc5ea
    153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004081702
    154 https://doi.org/10.1186/1471-2148-4-44
    155 schema:sdDatePublished 2022-08-04T16:54
    156 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    157 schema:sdPublisher Nd08c2ae0fd4642c48dab75da244fa568
    158 schema:url https://doi.org/10.1186/1471-2148-4-44
    159 sgo:license sg:explorer/license/
    160 sgo:sdDataset articles
    161 rdf:type schema:ScholarlyArticle
    162 N1632582705864e2494d5f3cd5fbb559d schema:issueNumber 1
    163 rdf:type schema:PublicationIssue
    164 N31f9a5db1ce747ac883fac531a9a6a59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Bacteria
    166 rdf:type schema:DefinedTerm
    167 N3e884d27781840158206951d0cb2b43a rdf:first Na6464d921d354c808af23e85e995de78
    168 rdf:rest N3fd2e82b4c4a4736aaaae42b463cf6f1
    169 N3fd2e82b4c4a4736aaaae42b463cf6f1 rdf:first sg:person.0657227305.70
    170 rdf:rest rdf:nil
    171 N574121cd5e1f47af89751444498427f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Biological Evolution
    173 rdf:type schema:DefinedTerm
    174 N77246b080a3148a3bf724a5b87fd4a1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Biomass
    176 rdf:type schema:DefinedTerm
    177 N7b441a99c01e48a5ba68a79294d81209 schema:name dimensions_id
    178 schema:value pub.1004081702
    179 rdf:type schema:PropertyValue
    180 N7bf58093caf64beda6fa3ea96daca6ee schema:name pubmed_id
    181 schema:value 15535883
    182 rdf:type schema:PropertyValue
    183 N7d9b447325c448cab4e7e84261dce7c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Evolution, Molecular
    185 rdf:type schema:DefinedTerm
    186 Na09750ca302a4659bd30c710ad63e85a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Genomics
    188 rdf:type schema:DefinedTerm
    189 Na6464d921d354c808af23e85e995de78 schema:affiliation grid-institutes:grid.4709.a
    190 schema:familyName Feijao
    191 schema:givenName Andreia
    192 rdf:type schema:Person
    193 Nbb88f2a388a0491594c9628da58265bb rdf:first sg:person.0756020706.94
    194 rdf:rest N3e884d27781840158206951d0cb2b43a
    195 Nd08c2ae0fd4642c48dab75da244fa568 schema:name Springer Nature - SN SciGraph project
    196 rdf:type schema:Organization
    197 Nd9072aa2137345f1aabe78b103afe6e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Photosynthesis
    199 rdf:type schema:DefinedTerm
    200 Nded9d42f18454cc4abb0cb9bec8fc5ea schema:name doi
    201 schema:value 10.1186/1471-2148-4-44
    202 rdf:type schema:PropertyValue
    203 Nf68d4fb5da9941f8a8dd2c1ee04e88d4 schema:volumeNumber 4
    204 rdf:type schema:PublicationVolume
    205 Nf7770d49512f4c1fa034bc4e1d66ce0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Methane
    207 rdf:type schema:DefinedTerm
    208 Nfed35309d2e441c59e25fea968042beb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Time
    210 rdf:type schema:DefinedTerm
    211 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    212 schema:name Biological Sciences
    213 rdf:type schema:DefinedTerm
    214 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Genetics
    216 rdf:type schema:DefinedTerm
    217 sg:journal.1024249 schema:issn 2730-7182
    218 schema:name BMC Ecology and Evolution
    219 schema:publisher Springer Nature
    220 rdf:type schema:Periodical
    221 sg:person.0657227305.70 schema:affiliation grid-institutes:grid.29857.31
    222 schema:familyName Hedges
    223 schema:givenName S Blair
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657227305.70
    225 rdf:type schema:Person
    226 sg:person.0756020706.94 schema:affiliation grid-institutes:grid.29857.31
    227 schema:familyName Battistuzzi
    228 schema:givenName Fabia U
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756020706.94
    230 rdf:type schema:Person
    231 sg:pub.10.1007/bf02111283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026736092
    232 https://doi.org/10.1007/bf02111283
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/pl00006574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044179657
    235 https://doi.org/10.1007/pl00006574
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s002390010078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043113870
    238 https://doi.org/10.1007/s002390010078
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s002390010170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003670246
    241 https://doi.org/10.1007/s002390010170
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s002390010224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051023881
    244 https://doi.org/10.1007/s002390010224
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1023/a:1010600401718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043699805
    247 https://doi.org/10.1023/a:1010600401718
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1023/a:1021415503436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024634489
    250 https://doi.org/10.1023/a:1021415503436
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1023/b:mici.0000008381.16848.8b schema:sameAs https://app.dimensions.ai/details/publication/pub.1052271613
    253 https://doi.org/10.1023/b:mici.0000008381.16848.8b
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1023/b:orig.0000009845.62244.d3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011981436
    256 https://doi.org/10.1023/b:orig.0000009845.62244.d3
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/23005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047452854
    259 https://doi.org/10.1038/23005
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/35036572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044282621
    262 https://doi.org/10.1038/35036572
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/35036677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045991446
    265 https://doi.org/10.1038/35036677
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/35046052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000496671
    268 https://doi.org/10.1038/35046052
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/35051557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036833195
    271 https://doi.org/10.1038/35051557
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/35059210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010826689
    274 https://doi.org/10.1038/35059210
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/37052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033679075
    277 https://doi.org/10.1038/37052
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/384055a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014084936
    280 https://doi.org/10.1038/384055a0
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/416073a schema:sameAs https://app.dimensions.ai/details/publication/pub.1047289177
    283 https://doi.org/10.1038/416073a
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/416076a schema:sameAs https://app.dimensions.ai/details/publication/pub.1033091024
    286 https://doi.org/10.1038/416076a
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/5052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038696050
    289 https://doi.org/10.1038/5052
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/90129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537539
    292 https://doi.org/10.1038/90129
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nature02573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049130719
    295 https://doi.org/10.1038/nature02573
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nrg1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032410834
    298 https://doi.org/10.1038/nrg1000
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nrg929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041641433
    301 https://doi.org/10.1038/nrg929
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1186/1471-2148-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022669281
    304 https://doi.org/10.1186/1471-2148-1-4
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1186/1471-2148-1-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035042918
    307 https://doi.org/10.1186/1471-2148-1-8
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1186/1471-2148-3-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017946378
    310 https://doi.org/10.1186/1471-2148-3-18
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/1471-2148-4-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028614061
    313 https://doi.org/10.1186/1471-2148-4-2
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/gb-2004-5-3-r17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028464475
    316 https://doi.org/10.1186/gb-2004-5-3-r17
    317 rdf:type schema:CreativeWork
    318 grid-institutes:grid.29857.31 schema:alternateName NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, 16802, University Park, PA, USA
    319 schema:name NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, 16802, University Park, PA, USA
    320 rdf:type schema:Organization
    321 grid-institutes:grid.4709.a schema:alternateName European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
    322 schema:name European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
    323 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...