A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-04-09

AUTHORS

Tsun-Tsao Huang, María Laura del Valle Marcos, Jenn-Kang Hwang, Julian Echave

ABSTRACT

BACKGROUND: Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site's rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site's Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site's LPD with its rate of evolution. RESULTS: We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein's potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant's active conformation.We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. CONCLUSIONS: We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility. More... »

PAGES

78-78

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-14-78

DOI

http://dx.doi.org/10.1186/1471-2148-14-78

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010096099

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24716445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pliability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Mechanical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Bioinformatics Research, National Chiao Tung University, HsinChu 30050, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu 30050, Taiwan", 
            "Center for Bioinformatics Research, National Chiao Tung University, HsinChu 30050, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Tsun-Tsao", 
        "id": "sg:person.01237604224.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237604224.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela de Ciencia y Tecnolog\u00eda, Universidad Nacional de San Mart\u00edn, Mart\u00edn de Irigoyen 3100, 1650 San Mart\u00edn, Buenos Aires Argentina", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Escuela de Ciencia y Tecnolog\u00eda, Universidad Nacional de San Mart\u00edn, Mart\u00edn de Irigoyen 3100, 1650 San Mart\u00edn, Buenos Aires Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "del Valle Marcos", 
        "givenName": "Mar\u00eda Laura", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Bioinformatics Research, National Chiao Tung University, HsinChu 30050, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu 30050, Taiwan", 
            "Center for Bioinformatics Research, National Chiao Tung University, HsinChu 30050, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jenn-Kang", 
        "id": "sg:person.01364151270.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela de Ciencia y Tecnolog\u00eda, Universidad Nacional de San Mart\u00edn, Mart\u00edn de Irigoyen 3100, 1650 San Mart\u00edn, Buenos Aires Argentina", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Escuela de Ciencia y Tecnolog\u00eda, Universidad Nacional de San Mart\u00edn, Mart\u00edn de Irigoyen 3100, 1650 San Mart\u00edn, Buenos Aires Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Echave", 
        "givenName": "Julian", 
        "id": "sg:person.01276412015.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276412015.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2210-10-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048865652", 
          "https://doi.org/10.1186/1471-2210-10-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012580174", 
          "https://doi.org/10.1038/nrm2762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-11-361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052339523", 
          "https://doi.org/10.1186/1471-2148-11-361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03206482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046462266", 
          "https://doi.org/10.3758/bf03206482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040006009", 
          "https://doi.org/10.1038/nrg1838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-62703-017-5_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026821444", 
          "https://doi.org/10.1007/978-1-62703-017-5_23"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-04-09", 
    "datePublishedReg": "2014-04-09", 
    "description": "BACKGROUND: Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site's rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site's Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site's LPD with its rate of evolution.\nRESULTS: We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein's potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant's active conformation.We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility.\nCONCLUSIONS: We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2148-14-78", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "site-specific evolutionary rates", 
      "evolutionary rates", 
      "rate of evolution", 
      "relative solvent accessibility", 
      "elastic network model", 
      "active conformation", 
      "sequence variability", 
      "main structural determinants", 
      "local packing density", 
      "mutational stress", 
      "simple elastic network models", 
      "structural determinants", 
      "dynamical flexibility", 
      "natural selection", 
      "most proteins", 
      "nonlinear dependence", 
      "potential energy landscape", 
      "evolution accounts", 
      "protein sites", 
      "recent comparative studies", 
      "protein studies", 
      "single active conformation", 
      "site-specific rates", 
      "statistical physics", 
      "solvent accessibility", 
      "random perturbations", 
      "biophysical constraints", 
      "protein", 
      "stress model", 
      "model mutations", 
      "conformation", 
      "site rates", 
      "protein's potential energy landscape", 
      "observed nonlinear dependence", 
      "network model", 
      "energy landscape", 
      "evolution", 
      "stress", 
      "flexibility model", 
      "mutations", 
      "sites", 
      "enzyme", 
      "physics", 
      "model", 
      "different rates", 
      "diverse datasets", 
      "dependence", 
      "variability", 
      "landscape", 
      "perturbations", 
      "determinants", 
      "local stress", 
      "constraints", 
      "mechanism", 
      "selection", 
      "flexibility", 
      "density", 
      "relationship", 
      "total weight", 
      "accessibility", 
      "account", 
      "evidence", 
      "study", 
      "rate", 
      "packing density", 
      "comparative study", 
      "linear increase", 
      "dataset", 
      "increase", 
      "linear relationship", 
      "weight", 
      "correlation", 
      "purpose", 
      "site's Local Packing Density", 
      "empirical Flexibility Model", 
      "mechanistic Stress Model", 
      "basic statistical physics", 
      "mutant's active conformation", 
      "local mutational stress", 
      "Such local stress", 
      "protein evolution accounts"
    ], 
    "name": "A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility", 
    "pagination": "78-78", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010096099"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-14-78"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24716445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-14-78", 
      "https://app.dimensions.ai/details/publication/pub.1010096099"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_625.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2148-14-78"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-14-78'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-14-78'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-14-78'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-14-78'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      22 PREDICATES      119 URIs      105 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-14-78 schema:about N360bbebb979743e1b837aabe5c09a362
2 N461302d5c9f64f2aafbaca544fe00acd
3 N55d1134c3728440ea3c55ca4d662693e
4 N68877647e2964a08bd8db89d65a01ef1
5 Nb72ac96eb8544439be2f77aa46236f3b
6 Ncd592402b160435dbf01d66972ead895
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N52b94bacd7844fc78a190836b7ea6d83
10 schema:citation sg:pub.10.1007/978-1-62703-017-5_23
11 sg:pub.10.1038/nrg1838
12 sg:pub.10.1038/nrm2762
13 sg:pub.10.1186/1471-2148-11-361
14 sg:pub.10.1186/1471-2210-10-6
15 sg:pub.10.3758/bf03206482
16 schema:datePublished 2014-04-09
17 schema:datePublishedReg 2014-04-09
18 schema:description BACKGROUND: Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site's rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site's Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site's LPD with its rate of evolution. RESULTS: We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein's potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant's active conformation.We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. CONCLUSIONS: We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N7abdee51c6e34109beb4f7fd29547c9f
23 N85ce81067af842129e0bac42c821f779
24 sg:journal.1024249
25 schema:keywords Such local stress
26 accessibility
27 account
28 active conformation
29 basic statistical physics
30 biophysical constraints
31 comparative study
32 conformation
33 constraints
34 correlation
35 dataset
36 density
37 dependence
38 determinants
39 different rates
40 diverse datasets
41 dynamical flexibility
42 elastic network model
43 empirical Flexibility Model
44 energy landscape
45 enzyme
46 evidence
47 evolution
48 evolution accounts
49 evolutionary rates
50 flexibility
51 flexibility model
52 increase
53 landscape
54 linear increase
55 linear relationship
56 local mutational stress
57 local packing density
58 local stress
59 main structural determinants
60 mechanism
61 mechanistic Stress Model
62 model
63 model mutations
64 most proteins
65 mutant's active conformation
66 mutational stress
67 mutations
68 natural selection
69 network model
70 nonlinear dependence
71 observed nonlinear dependence
72 packing density
73 perturbations
74 physics
75 potential energy landscape
76 protein
77 protein evolution accounts
78 protein sites
79 protein studies
80 protein's potential energy landscape
81 purpose
82 random perturbations
83 rate
84 rate of evolution
85 recent comparative studies
86 relationship
87 relative solvent accessibility
88 selection
89 sequence variability
90 simple elastic network models
91 single active conformation
92 site rates
93 site's Local Packing Density
94 site-specific evolutionary rates
95 site-specific rates
96 sites
97 solvent accessibility
98 statistical physics
99 stress
100 stress model
101 structural determinants
102 study
103 total weight
104 variability
105 weight
106 schema:name A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility
107 schema:pagination 78-78
108 schema:productId N5ce1a9b85fba4c3da1b2a4e43ef1d5b4
109 N956317cec69440a9b423b8fa38dd4011
110 N9befcb0e7eca4482b30cb27bdf341bb5
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010096099
112 https://doi.org/10.1186/1471-2148-14-78
113 schema:sdDatePublished 2022-01-01T18:33
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N4bb716a19f754899910c81b6e49ddce5
116 schema:url https://doi.org/10.1186/1471-2148-14-78
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N0e8e193a170940808db9fefbfd3d88b7 rdf:first sg:person.01276412015.44
121 rdf:rest rdf:nil
122 N1f61931e9bb7483996cd708b3e6bd84e rdf:first Nd263bd545d7a4e69a6289434565ed13b
123 rdf:rest Nb91f11c6c1b6436ab72bd65a44b46af8
124 N360bbebb979743e1b837aabe5c09a362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Stress, Mechanical
126 rdf:type schema:DefinedTerm
127 N461302d5c9f64f2aafbaca544fe00acd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Evolution, Molecular
129 rdf:type schema:DefinedTerm
130 N4bb716a19f754899910c81b6e49ddce5 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N52b94bacd7844fc78a190836b7ea6d83 rdf:first sg:person.01237604224.77
133 rdf:rest N1f61931e9bb7483996cd708b3e6bd84e
134 N55d1134c3728440ea3c55ca4d662693e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Biological Evolution
136 rdf:type schema:DefinedTerm
137 N5ce1a9b85fba4c3da1b2a4e43ef1d5b4 schema:name pubmed_id
138 schema:value 24716445
139 rdf:type schema:PropertyValue
140 N68877647e2964a08bd8db89d65a01ef1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Models, Genetic
142 rdf:type schema:DefinedTerm
143 N7abdee51c6e34109beb4f7fd29547c9f schema:issueNumber 1
144 rdf:type schema:PublicationIssue
145 N85ce81067af842129e0bac42c821f779 schema:volumeNumber 14
146 rdf:type schema:PublicationVolume
147 N956317cec69440a9b423b8fa38dd4011 schema:name doi
148 schema:value 10.1186/1471-2148-14-78
149 rdf:type schema:PropertyValue
150 N9befcb0e7eca4482b30cb27bdf341bb5 schema:name dimensions_id
151 schema:value pub.1010096099
152 rdf:type schema:PropertyValue
153 Nb72ac96eb8544439be2f77aa46236f3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Pliability
155 rdf:type schema:DefinedTerm
156 Nb91f11c6c1b6436ab72bd65a44b46af8 rdf:first sg:person.01364151270.35
157 rdf:rest N0e8e193a170940808db9fefbfd3d88b7
158 Ncd592402b160435dbf01d66972ead895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Proteins
160 rdf:type schema:DefinedTerm
161 Nd263bd545d7a4e69a6289434565ed13b schema:affiliation grid-institutes:None
162 schema:familyName del Valle Marcos
163 schema:givenName María Laura
164 rdf:type schema:Person
165 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
166 schema:name Biological Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
169 schema:name Genetics
170 rdf:type schema:DefinedTerm
171 sg:journal.1024249 schema:issn 1471-2148
172 schema:name BMC Evolutionary Biology
173 schema:publisher Springer Nature
174 rdf:type schema:Periodical
175 sg:person.01237604224.77 schema:affiliation grid-institutes:grid.260539.b
176 schema:familyName Huang
177 schema:givenName Tsun-Tsao
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237604224.77
179 rdf:type schema:Person
180 sg:person.01276412015.44 schema:affiliation grid-institutes:None
181 schema:familyName Echave
182 schema:givenName Julian
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276412015.44
184 rdf:type schema:Person
185 sg:person.01364151270.35 schema:affiliation grid-institutes:grid.260539.b
186 schema:familyName Hwang
187 schema:givenName Jenn-Kang
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35
189 rdf:type schema:Person
190 sg:pub.10.1007/978-1-62703-017-5_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026821444
191 https://doi.org/10.1007/978-1-62703-017-5_23
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nrg1838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040006009
194 https://doi.org/10.1038/nrg1838
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nrm2762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012580174
197 https://doi.org/10.1038/nrm2762
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/1471-2148-11-361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052339523
200 https://doi.org/10.1186/1471-2148-11-361
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1471-2210-10-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048865652
203 https://doi.org/10.1186/1471-2210-10-6
204 rdf:type schema:CreativeWork
205 sg:pub.10.3758/bf03206482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046462266
206 https://doi.org/10.3758/bf03206482
207 rdf:type schema:CreativeWork
208 grid-institutes:None schema:alternateName Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Martín de Irigoyen 3100, 1650 San Martín, Buenos Aires Argentina
209 schema:name Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Martín de Irigoyen 3100, 1650 San Martín, Buenos Aires Argentina
210 rdf:type schema:Organization
211 grid-institutes:grid.260539.b schema:alternateName Center for Bioinformatics Research, National Chiao Tung University, HsinChu 30050, Taiwan
212 schema:name Center for Bioinformatics Research, National Chiao Tung University, HsinChu 30050, Taiwan
213 Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu 30050, Taiwan
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...