Consistent mutational paths predict eukaryotic thermostability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-01-10

AUTHORS

Vera van Noort, Bettina Bradatsch, Manimozhiyan Arumugam, Stefan Amlacher, Gert Bange, Chris Creevey, Sebastian Falk, Daniel R Mende, Irmgard Sinning, Ed Hurt, Peer Bork

ABSTRACT

BackgroundProteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published.ResultsStudying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the molecular consequences of some of these mutations.ConclusionsThe comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-13-7

DOI

http://dx.doi.org/10.1186/1471-2148-13-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016072125

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23305080


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Substitution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hot Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Stability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sordariales", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4709.a", 
          "name": [
            "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Noort", 
        "givenName": "Vera", 
        "id": "sg:person.01256071377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256071377.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bradatsch", 
        "givenName": "Bettina", 
        "id": "sg:person.0700302422.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700302422.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4709.a", 
          "name": [
            "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arumugam", 
        "givenName": "Manimozhiyan", 
        "id": "sg:person.01235472333.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235472333.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amlacher", 
        "givenName": "Stefan", 
        "id": "sg:person.01322576537.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322576537.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LOEWE Zentrum f\u00fcr synthetische Mikrobiologie, Phillips-University-Marburg, Marburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany", 
            "LOEWE Zentrum f\u00fcr synthetische Mikrobiologie, Phillips-University-Marburg, Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bange", 
        "givenName": "Gert", 
        "id": "sg:person.01064642420.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064642420.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Teagasc Animal Bioscience Centre, Grange, Dunsany, Co. Meath, Ireland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Teagasc Animal Bioscience Centre, Grange, Dunsany, Co. Meath, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Creevey", 
        "givenName": "Chris", 
        "id": "sg:person.0674055165.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674055165.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Falk", 
        "givenName": "Sebastian", 
        "id": "sg:person.01115062374.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115062374.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4709.a", 
          "name": [
            "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mende", 
        "givenName": "Daniel R", 
        "id": "sg:person.0736702133.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736702133.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinning", 
        "givenName": "Irmgard", 
        "id": "sg:person.01255623736.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255623736.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Biochemie-Zentrum der Universit\u00e4t Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hurt", 
        "givenName": "Ed", 
        "id": "sg:person.01206770757.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206770757.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Delbr\u00fcck-Centre for Molecular Medicine, Berlin-Buch, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419491.0", 
          "name": [
            "European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany", 
            "Max-Delbr\u00fcck-Centre for Molecular Medicine, Berlin-Buch, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bork", 
        "givenName": "Peer", 
        "id": "sg:person.01240760565.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240760565.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrmicro2649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023404671", 
          "https://doi.org/10.1038/nrmicro2649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-007-1020-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021604001", 
          "https://doi.org/10.1007/s00253-007-1020-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024199275", 
          "https://doi.org/10.1038/nature01554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031663325", 
          "https://doi.org/10.1186/gb-2004-5-10-117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351586a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042980305", 
          "https://doi.org/10.1038/351586a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35030006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013504492", 
          "https://doi.org/10.1038/35030006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002490916", 
          "https://doi.org/10.1038/nbt.1976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-011-3799-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038425748", 
          "https://doi.org/10.1007/s00253-011-3799-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01-10", 
    "datePublishedReg": "2013-01-10", 
    "description": "BackgroundProteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published.ResultsStudying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the molecular consequences of some of these mutations.ConclusionsThe comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2148-13-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "2730-7182"
        ], 
        "name": "BMC Ecology and Evolution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "mutational paths", 
      "thermophilic fungi", 
      "eukaryotic cell function", 
      "reduced genome size", 
      "amino acid biases", 
      "particular amino acid residues", 
      "amino acid residues", 
      "protein stability engineering", 
      "amino acid substitutions", 
      "genome size", 
      "independent lineages", 
      "different kingdoms", 
      "thermophilic prokaryotes", 
      "thermophilic eukaryote", 
      "three-dimensional structure", 
      "genome sequence", 
      "substitution of lysine", 
      "Chaetomium thermophilum", 
      "consistent amino acid substitutions", 
      "structural biology", 
      "protein stability", 
      "thermal adaptation", 
      "individual proteins", 
      "C. thermophilum", 
      "molecular consequences", 
      "acid residues", 
      "acid substitutions", 
      "exemplar protein", 
      "Thielavia terrestris", 
      "genome", 
      "proteome", 
      "protein", 
      "lineages", 
      "cell function", 
      "stability engineering", 
      "thermophilum", 
      "fungi", 
      "eukaryotes", 
      "Sordariomycetes", 
      "prokaryotes", 
      "thermostability", 
      "archaea", 
      "thermophiles", 
      "biology", 
      "common strategy", 
      "consistent pattern", 
      "mutations", 
      "terrestris", 
      "residues", 
      "bacteria", 
      "biotechnology", 
      "comparative analysis", 
      "substitution", 
      "lysine", 
      "sequence", 
      "arginine", 
      "adaptation", 
      "evolution", 
      "function", 
      "patterns", 
      "understanding", 
      "consequences", 
      "Kingdom", 
      "structure", 
      "engineering", 
      "analysis", 
      "size", 
      "strategies", 
      "comparison", 
      "stability", 
      "biases", 
      "new way", 
      "way", 
      "life", 
      "path"
    ], 
    "name": "Consistent mutational paths predict eukaryotic thermostability", 
    "pagination": "7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016072125"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-13-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23305080"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-13-7", 
      "https://app.dimensions.ai/details/publication/pub.1016072125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_606.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2148-13-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-13-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-13-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-13-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-13-7'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      123 URIs      105 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-13-7 schema:about N0e406180a9be42d1b7ab51739d62551f
2 N1109d63cbb6943f7a05616c5f871720e
3 N25e05d206be4473a957a3351a070e55f
4 N3576580ed5764d43b889e24f167e898f
5 N58567d888e3043a6b4f60a23d57359d6
6 N89121feedd5841a0aded0cd27a9a944e
7 Naca5d9a62f9e4e449655bafac4518a7f
8 Nbb9918b2f3814407b3c21dfd332604d2
9 Nc192e8645b92465591a5182952572584
10 Ncd788e8ee50d417f9954d04a5403c821
11 Nd3d6b2b8f8534f389ad202bfeca37e19
12 Nf63bbb0f8d91485ca905b03264203a0d
13 Nfdaf0b2bdcc84b7380ab6f322535f5e5
14 anzsrc-for:06
15 anzsrc-for:0601
16 anzsrc-for:0604
17 anzsrc-for:0605
18 schema:author N008bd8469ba24904ae178b7b8e9a228d
19 schema:citation sg:pub.10.1007/s00253-007-1020-y
20 sg:pub.10.1007/s00253-011-3799-9
21 sg:pub.10.1038/35030006
22 sg:pub.10.1038/351586a0
23 sg:pub.10.1038/nature01554
24 sg:pub.10.1038/nbt.1976
25 sg:pub.10.1038/nrmicro2649
26 sg:pub.10.1186/gb-2004-5-10-117
27 schema:datePublished 2013-01-10
28 schema:datePublishedReg 2013-01-10
29 schema:description BackgroundProteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published.ResultsStudying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the molecular consequences of some of these mutations.ConclusionsThe comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N290afa8ddbbf47dbb89cd58e7747dbc5
33 N530b803709d84aa29b326c71d6014060
34 sg:journal.1024249
35 schema:keywords C. thermophilum
36 Chaetomium thermophilum
37 Kingdom
38 Sordariomycetes
39 Thielavia terrestris
40 acid residues
41 acid substitutions
42 adaptation
43 amino acid biases
44 amino acid residues
45 amino acid substitutions
46 analysis
47 archaea
48 arginine
49 bacteria
50 biases
51 biology
52 biotechnology
53 cell function
54 common strategy
55 comparative analysis
56 comparison
57 consequences
58 consistent amino acid substitutions
59 consistent pattern
60 different kingdoms
61 engineering
62 eukaryotes
63 eukaryotic cell function
64 evolution
65 exemplar protein
66 function
67 fungi
68 genome
69 genome sequence
70 genome size
71 independent lineages
72 individual proteins
73 life
74 lineages
75 lysine
76 molecular consequences
77 mutational paths
78 mutations
79 new way
80 particular amino acid residues
81 path
82 patterns
83 prokaryotes
84 protein
85 protein stability
86 protein stability engineering
87 proteome
88 reduced genome size
89 residues
90 sequence
91 size
92 stability
93 stability engineering
94 strategies
95 structural biology
96 structure
97 substitution
98 substitution of lysine
99 terrestris
100 thermal adaptation
101 thermophiles
102 thermophilic eukaryote
103 thermophilic fungi
104 thermophilic prokaryotes
105 thermophilum
106 thermostability
107 three-dimensional structure
108 understanding
109 way
110 schema:name Consistent mutational paths predict eukaryotic thermostability
111 schema:pagination 7
112 schema:productId N537f8d3c3aed473787e4e7edf96b638b
113 N67247ae49ab9414faa4935dbf1b5084e
114 Nb618e37c02b44c1db9626f277c50ebb5
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016072125
116 https://doi.org/10.1186/1471-2148-13-7
117 schema:sdDatePublished 2022-11-24T20:58
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher Nfb7e98a7c28041e2aeb3c15810da95b1
120 schema:url https://doi.org/10.1186/1471-2148-13-7
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N008bd8469ba24904ae178b7b8e9a228d rdf:first sg:person.01256071377.34
125 rdf:rest Nbe2d0af5c0d54c41bdb56b80e152e532
126 N0e406180a9be42d1b7ab51739d62551f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Protein Structure, Tertiary
128 rdf:type schema:DefinedTerm
129 N1109d63cbb6943f7a05616c5f871720e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Genome, Fungal
131 rdf:type schema:DefinedTerm
132 N159c2be6752f4b7991ff501805577051 rdf:first sg:person.01255623736.44
133 rdf:rest Nd3b02f0772b84528a2f6893874a30ccf
134 N1ae72946afd84b0d8d2a247ffe16b3ec rdf:first sg:person.01235472333.35
135 rdf:rest Nfb8614d6ad1244f694d1ce94d63e1169
136 N22203e2ecea140fda5fa6cb3348d25d6 rdf:first sg:person.0674055165.09
137 rdf:rest N330d9afb7b4f4acc80744de9e3057035
138 N2353f513565a487b9c64bb975ded4203 rdf:first sg:person.0736702133.49
139 rdf:rest N159c2be6752f4b7991ff501805577051
140 N25e05d206be4473a957a3351a070e55f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Phylogeny
142 rdf:type schema:DefinedTerm
143 N290afa8ddbbf47dbb89cd58e7747dbc5 schema:volumeNumber 13
144 rdf:type schema:PublicationVolume
145 N330d9afb7b4f4acc80744de9e3057035 rdf:first sg:person.01115062374.27
146 rdf:rest N2353f513565a487b9c64bb975ded4203
147 N3576580ed5764d43b889e24f167e898f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Mutation
149 rdf:type schema:DefinedTerm
150 N530b803709d84aa29b326c71d6014060 schema:issueNumber 1
151 rdf:type schema:PublicationIssue
152 N537f8d3c3aed473787e4e7edf96b638b schema:name doi
153 schema:value 10.1186/1471-2148-13-7
154 rdf:type schema:PropertyValue
155 N58567d888e3043a6b4f60a23d57359d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Adaptation, Biological
157 rdf:type schema:DefinedTerm
158 N67247ae49ab9414faa4935dbf1b5084e schema:name pubmed_id
159 schema:value 23305080
160 rdf:type schema:PropertyValue
161 N80a7ef947cc1449bb238866dead7653d rdf:first sg:person.01064642420.50
162 rdf:rest N22203e2ecea140fda5fa6cb3348d25d6
163 N89121feedd5841a0aded0cd27a9a944e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Amino Acid Substitution
165 rdf:type schema:DefinedTerm
166 Naca5d9a62f9e4e449655bafac4518a7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Proteome
168 rdf:type schema:DefinedTerm
169 Nb618e37c02b44c1db9626f277c50ebb5 schema:name dimensions_id
170 schema:value pub.1016072125
171 rdf:type schema:PropertyValue
172 Nbb9918b2f3814407b3c21dfd332604d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Sordariales
174 rdf:type schema:DefinedTerm
175 Nbe2d0af5c0d54c41bdb56b80e152e532 rdf:first sg:person.0700302422.64
176 rdf:rest N1ae72946afd84b0d8d2a247ffe16b3ec
177 Nc192e8645b92465591a5182952572584 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Protein Stability
179 rdf:type schema:DefinedTerm
180 Ncd788e8ee50d417f9954d04a5403c821 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Amino Acid Sequence
182 rdf:type schema:DefinedTerm
183 Nd3b02f0772b84528a2f6893874a30ccf rdf:first sg:person.01206770757.07
184 rdf:rest Ne3292e3d89024b1fb347b7acf10fb6e4
185 Nd3d6b2b8f8534f389ad202bfeca37e19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Biological Evolution
187 rdf:type schema:DefinedTerm
188 Ne3292e3d89024b1fb347b7acf10fb6e4 rdf:first sg:person.01240760565.42
189 rdf:rest rdf:nil
190 Nf63bbb0f8d91485ca905b03264203a0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Molecular Sequence Data
192 rdf:type schema:DefinedTerm
193 Nfb7e98a7c28041e2aeb3c15810da95b1 schema:name Springer Nature - SN SciGraph project
194 rdf:type schema:Organization
195 Nfb8614d6ad1244f694d1ce94d63e1169 rdf:first sg:person.01322576537.32
196 rdf:rest N80a7ef947cc1449bb238866dead7653d
197 Nfdaf0b2bdcc84b7380ab6f322535f5e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Hot Temperature
199 rdf:type schema:DefinedTerm
200 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
201 schema:name Biological Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
204 schema:name Biochemistry and Cell Biology
205 rdf:type schema:DefinedTerm
206 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
207 schema:name Genetics
208 rdf:type schema:DefinedTerm
209 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
210 schema:name Microbiology
211 rdf:type schema:DefinedTerm
212 sg:journal.1024249 schema:issn 2730-7182
213 schema:name BMC Ecology and Evolution
214 schema:publisher Springer Nature
215 rdf:type schema:Periodical
216 sg:person.01064642420.50 schema:affiliation grid-institutes:grid.10253.35
217 schema:familyName Bange
218 schema:givenName Gert
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064642420.50
220 rdf:type schema:Person
221 sg:person.01115062374.27 schema:affiliation grid-institutes:grid.7700.0
222 schema:familyName Falk
223 schema:givenName Sebastian
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115062374.27
225 rdf:type schema:Person
226 sg:person.01206770757.07 schema:affiliation grid-institutes:grid.7700.0
227 schema:familyName Hurt
228 schema:givenName Ed
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206770757.07
230 rdf:type schema:Person
231 sg:person.01235472333.35 schema:affiliation grid-institutes:grid.4709.a
232 schema:familyName Arumugam
233 schema:givenName Manimozhiyan
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235472333.35
235 rdf:type schema:Person
236 sg:person.01240760565.42 schema:affiliation grid-institutes:grid.419491.0
237 schema:familyName Bork
238 schema:givenName Peer
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240760565.42
240 rdf:type schema:Person
241 sg:person.01255623736.44 schema:affiliation grid-institutes:grid.7700.0
242 schema:familyName Sinning
243 schema:givenName Irmgard
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255623736.44
245 rdf:type schema:Person
246 sg:person.01256071377.34 schema:affiliation grid-institutes:grid.4709.a
247 schema:familyName van Noort
248 schema:givenName Vera
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256071377.34
250 rdf:type schema:Person
251 sg:person.01322576537.32 schema:affiliation grid-institutes:grid.7700.0
252 schema:familyName Amlacher
253 schema:givenName Stefan
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322576537.32
255 rdf:type schema:Person
256 sg:person.0674055165.09 schema:affiliation grid-institutes:None
257 schema:familyName Creevey
258 schema:givenName Chris
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674055165.09
260 rdf:type schema:Person
261 sg:person.0700302422.64 schema:affiliation grid-institutes:grid.7700.0
262 schema:familyName Bradatsch
263 schema:givenName Bettina
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700302422.64
265 rdf:type schema:Person
266 sg:person.0736702133.49 schema:affiliation grid-institutes:grid.4709.a
267 schema:familyName Mende
268 schema:givenName Daniel R
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736702133.49
270 rdf:type schema:Person
271 sg:pub.10.1007/s00253-007-1020-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021604001
272 https://doi.org/10.1007/s00253-007-1020-y
273 rdf:type schema:CreativeWork
274 sg:pub.10.1007/s00253-011-3799-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038425748
275 https://doi.org/10.1007/s00253-011-3799-9
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/35030006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013504492
278 https://doi.org/10.1038/35030006
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/351586a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042980305
281 https://doi.org/10.1038/351586a0
282 rdf:type schema:CreativeWork
283 sg:pub.10.1038/nature01554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024199275
284 https://doi.org/10.1038/nature01554
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/nbt.1976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490916
287 https://doi.org/10.1038/nbt.1976
288 rdf:type schema:CreativeWork
289 sg:pub.10.1038/nrmicro2649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023404671
290 https://doi.org/10.1038/nrmicro2649
291 rdf:type schema:CreativeWork
292 sg:pub.10.1186/gb-2004-5-10-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031663325
293 https://doi.org/10.1186/gb-2004-5-10-117
294 rdf:type schema:CreativeWork
295 grid-institutes:None schema:alternateName Teagasc Animal Bioscience Centre, Grange, Dunsany, Co. Meath, Ireland
296 schema:name Teagasc Animal Bioscience Centre, Grange, Dunsany, Co. Meath, Ireland
297 rdf:type schema:Organization
298 grid-institutes:grid.10253.35 schema:alternateName LOEWE Zentrum für synthetische Mikrobiologie, Phillips-University-Marburg, Marburg, Germany
299 schema:name Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany
300 LOEWE Zentrum für synthetische Mikrobiologie, Phillips-University-Marburg, Marburg, Germany
301 rdf:type schema:Organization
302 grid-institutes:grid.419491.0 schema:alternateName Max-Delbrück-Centre for Molecular Medicine, Berlin-Buch, Germany
303 schema:name European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
304 Max-Delbrück-Centre for Molecular Medicine, Berlin-Buch, Germany
305 rdf:type schema:Organization
306 grid-institutes:grid.4709.a schema:alternateName European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
307 schema:name European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
308 rdf:type schema:Organization
309 grid-institutes:grid.7700.0 schema:alternateName Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany
310 schema:name Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120, Heidelberg, Germany
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...