BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Alexis Criscuolo, Simonetta Gribaldo

ABSTRACT

BACKGROUND: The quality of multiple sequence alignments plays an important role in the accuracy of phylogenetic inference. It has been shown that removing ambiguously aligned regions, but also other sources of bias such as highly variable (saturated) characters, can improve the overall performance of many phylogenetic reconstruction methods. A current scientific trend is to build phylogenetic trees from a large number of sequence datasets (semi-)automatically extracted from numerous complete genomes. Because these approaches do not allow a precise manual curation of each dataset, there exists a real need for efficient bioinformatic tools dedicated to this alignment character trimming step. RESULTS: Here is presented a new software, named BMGE (Block Mapping and Gathering with Entropy), that is designed to select regions in a multiple sequence alignment that are suited for phylogenetic inference. For each character, BMGE computes a score closely related to an entropy value. Calculation of these entropy-like scores is weighted with BLOSUM or PAM similarity matrices in order to distinguish among biologically expected and unexpected variability for each aligned character. Sets of contiguous characters with a score above a given threshold are considered as not suited for phylogenetic inference and then removed. Simulation analyses show that the character trimming performed by BMGE produces datasets leading to accurate trees, especially with alignments including distantly-related sequences. BMGE also implements trimming and recoding methods aimed at minimizing phylogeny reconstruction artefacts due to compositional heterogeneity. CONCLUSIONS: BMGE is able to perform biologically relevant trimming on a multiple alignment of DNA, codon or amino acid sequences. Java source code and executable are freely available at ftp://ftp.pasteur.fr/pub/GenSoft/projects/BMGE/. More... »

PAGES

210

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-10-210

DOI

http://dx.doi.org/10.1186/1471-2148-10-210

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001075316

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20626897


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Pasteur", 
          "id": "https://www.grid.ac/institutes/grid.428999.7", 
          "name": [
            "Institut Pasteur, Unit\u00e9 de Biologie Mol\u00e9culaire du G\u00e8ne chez les Extr\u00eamophiles, D\u00e9partement de Microbiologie, 25 rue du Dr Roux, 75015, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Criscuolo", 
        "givenName": "Alexis", 
        "id": "sg:person.01175454264.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175454264.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Pasteur", 
          "id": "https://www.grid.ac/institutes/grid.428999.7", 
          "name": [
            "Institut Pasteur, Unit\u00e9 de Biologie Mol\u00e9culaire du G\u00e8ne chez les Extr\u00eamophiles, D\u00e9partement de Microbiologie, 25 rue du Dr Roux, 75015, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gribaldo", 
        "givenName": "Simonetta", 
        "id": "sg:person.01301415104.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301415104.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/molbev/msl170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001558918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.06.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001685312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003359288", 
          "https://doi.org/10.1007/bf02101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003359288", 
          "https://doi.org/10.1007/bf02101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004074396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02498640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458196", 
          "https://doi.org/10.1007/bf02498640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02498640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458196", 
          "https://doi.org/10.1007/bf02498640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0804-1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006061272", 
          "https://doi.org/10.1038/nbt0804-1035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0804-1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006061272", 
          "https://doi.org/10.1038/nbt0804-1035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1351/pac197231040639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007565040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-7188-3-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008822563", 
          "https://doi.org/10.1186/1748-7188-3-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.22.10915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012226005", 
          "https://doi.org/10.1007/bf00178256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016335638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5193(86)80075-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017782718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150701472164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019116948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020024759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020601630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021757450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0807880106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024349849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msn034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025224311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025846396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027055621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1385-7258(52)50042-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027915302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.4.1455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028025978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1096-0031.1999.tb00277.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028692737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1096-0031.1999.tb00277.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028692737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028886218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029791427", 
          "https://doi.org/10.1038/nature02053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029791427", 
          "https://doi.org/10.1038/nature02053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsbl.2008.0224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030772117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030802805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-009-9212-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034424824", 
          "https://doi.org/10.1007/s00239-009-9212-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-009-9212-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034424824", 
          "https://doi.org/10.1007/s00239-009-9212-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-009-9212-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034424824", 
          "https://doi.org/10.1007/s00239-009-9212-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.187002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034683661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-2998(78)80014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035405952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035839794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036857539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037148423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(91)90528-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038403355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039556714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2006.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039864920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040413794", 
          "https://doi.org/10.1186/1471-2105-5-113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002399910038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041828088", 
          "https://doi.org/10.1007/s002399910038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/18.20.6097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041886714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1123061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043495787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2333/bhmk.18.30_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043574039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01734359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065382", 
          "https://doi.org/10.1007/bf01734359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01734359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065382", 
          "https://doi.org/10.1007/bf01734359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/13.3.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044605581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(05)80165-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045903080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(05)80165-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045903080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/syq010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046004748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-9659(94)90024-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046058190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046189146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.03323604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048320527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1200449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048366177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1200449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048366177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2002.1190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048790324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051314407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5193(05)80104-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053616169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1946.10501898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058298755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1948.10483284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058298852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150390235520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150490468648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150500354688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150500354688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150500541722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150500541730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150600755453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150600999150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/8.3.275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/42.3-4.412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/43.4.578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060048197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2009.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3287615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062604299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177731710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064402410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2408678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069917669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077879115", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077890503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078204592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.143.1.7063747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082130998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fasebj.7.1.8422957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082800679"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: The quality of multiple sequence alignments plays an important role in the accuracy of phylogenetic inference. It has been shown that removing ambiguously aligned regions, but also other sources of bias such as highly variable (saturated) characters, can improve the overall performance of many phylogenetic reconstruction methods. A current scientific trend is to build phylogenetic trees from a large number of sequence datasets (semi-)automatically extracted from numerous complete genomes. Because these approaches do not allow a precise manual curation of each dataset, there exists a real need for efficient bioinformatic tools dedicated to this alignment character trimming step.\nRESULTS: Here is presented a new software, named BMGE (Block Mapping and Gathering with Entropy), that is designed to select regions in a multiple sequence alignment that are suited for phylogenetic inference. For each character, BMGE computes a score closely related to an entropy value. Calculation of these entropy-like scores is weighted with BLOSUM or PAM similarity matrices in order to distinguish among biologically expected and unexpected variability for each aligned character. Sets of contiguous characters with a score above a given threshold are considered as not suited for phylogenetic inference and then removed. Simulation analyses show that the character trimming performed by BMGE produces datasets leading to accurate trees, especially with alignments including distantly-related sequences. BMGE also implements trimming and recoding methods aimed at minimizing phylogeny reconstruction artefacts due to compositional heterogeneity.\nCONCLUSIONS: BMGE is able to perform biologically relevant trimming on a multiple alignment of DNA, codon or amino acid sequences. Java source code and executable are freely available at ftp://ftp.pasteur.fr/pub/GenSoft/projects/BMGE/.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2148-10-210", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments", 
    "pagination": "210", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "051f5464b9e20070bcf5dd2f667a7ce8dd6bbc71fc2fb66a190f313a1c9c18b4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20626897"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-10-210"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001075316"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-10-210", 
      "https://app.dimensions.ai/details/publication/pub.1001075316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2148-10-210"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-210'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-210'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-210'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-210'


 

This table displays all metadata directly associated to this object as RDF triples.

340 TRIPLES      21 PREDICATES      112 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-10-210 schema:about N128ec261d182468fab2b1d4b383382a0
2 N3134f923e17344099dd02a93bde23513
3 N38b564f3f41b4153a430100017013819
4 N458e8fa315a14239a85d227c55991040
5 N8b92a47f81ad4e5cb3f550e335e20f85
6 Na0a2782ab466456e9ac7db21584a81fc
7 Ndf9d025199364dc4a842cf7cd6ee1c21
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N1e048781f0a94baaa21dbbd39d42bd6c
11 schema:citation sg:pub.10.1007/bf00178256
12 sg:pub.10.1007/bf01734359
13 sg:pub.10.1007/bf02101990
14 sg:pub.10.1007/bf02498640
15 sg:pub.10.1007/s00239-009-9212-y
16 sg:pub.10.1007/s002399910038
17 sg:pub.10.1038/nature02053
18 sg:pub.10.1038/nbt0804-1035
19 sg:pub.10.1186/1471-2105-5-113
20 sg:pub.10.1186/1748-7188-3-7
21 https://app.dimensions.ai/details/publication/pub.1077879115
22 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
23 https://doi.org/10.1016/0022-2836(91)90528-e
24 https://doi.org/10.1016/0893-9659(94)90024-8
25 https://doi.org/10.1016/j.cub.2005.06.040
26 https://doi.org/10.1016/j.patrec.2005.10.010
27 https://doi.org/10.1016/j.sbi.2006.04.004
28 https://doi.org/10.1016/s0001-2998(78)80014-2
29 https://doi.org/10.1016/s0022-5193(05)80104-3
30 https://doi.org/10.1016/s0022-5193(86)80075-3
31 https://doi.org/10.1016/s1046-2023(05)80165-3
32 https://doi.org/10.1016/s1385-7258(52)50042-8
33 https://doi.org/10.1042/bj1200449
34 https://doi.org/10.1073/pnas.0807880106
35 https://doi.org/10.1073/pnas.89.22.10915
36 https://doi.org/10.1073/pnas.91.4.1455
37 https://doi.org/10.1080/01621459.1946.10501898
38 https://doi.org/10.1080/01621459.1948.10483284
39 https://doi.org/10.1080/10635150390235520
40 https://doi.org/10.1080/10635150490468648
41 https://doi.org/10.1080/10635150500354688
42 https://doi.org/10.1080/10635150500541722
43 https://doi.org/10.1080/10635150500541730
44 https://doi.org/10.1080/10635150600755453
45 https://doi.org/10.1080/10635150600999150
46 https://doi.org/10.1080/10635150701472164
47 https://doi.org/10.1093/bioinformatics/13.3.235
48 https://doi.org/10.1093/bioinformatics/8.3.275
49 https://doi.org/10.1093/bioinformatics/btl064
50 https://doi.org/10.1093/bioinformatics/btp348
51 https://doi.org/10.1093/bioinformatics/btp493
52 https://doi.org/10.1093/biomet/42.3-4.412
53 https://doi.org/10.1093/molbev/msh137
54 https://doi.org/10.1093/molbev/msh156
55 https://doi.org/10.1093/molbev/msl170
56 https://doi.org/10.1093/molbev/msm089
57 https://doi.org/10.1093/molbev/msm144
58 https://doi.org/10.1093/molbev/msn034
59 https://doi.org/10.1093/nar/18.20.6097
60 https://doi.org/10.1093/nar/gkh340
61 https://doi.org/10.1093/nar/gkm899
62 https://doi.org/10.1093/oxfordjournals.molbev.a025779
63 https://doi.org/10.1093/oxfordjournals.molbev.a025808
64 https://doi.org/10.1093/oxfordjournals.molbev.a025991
65 https://doi.org/10.1093/oxfordjournals.molbev.a026334
66 https://doi.org/10.1093/oxfordjournals.molbev.a040136
67 https://doi.org/10.1093/oxfordjournals.molbev.a040182
68 https://doi.org/10.1093/oxfordjournals.molbev.a040654
69 https://doi.org/10.1093/sysbio/43.4.578
70 https://doi.org/10.1093/sysbio/syq010
71 https://doi.org/10.1096/fasebj.7.1.8422957
72 https://doi.org/10.1098/rsbl.2008.0224
73 https://doi.org/10.1098/rstb.2002.1190
74 https://doi.org/10.1101/gr.187002
75 https://doi.org/10.1109/tcbb.2009.68
76 https://doi.org/10.1110/ps.03323604
77 https://doi.org/10.1111/j.1096-0031.1999.tb00277.x
78 https://doi.org/10.1126/science.1123061
79 https://doi.org/10.1126/science.3287615
80 https://doi.org/10.1148/radiology.143.1.7063747
81 https://doi.org/10.1214/aoms/1177731710
82 https://doi.org/10.1351/pac197231040639
83 https://doi.org/10.1371/journal.pcbi.0030123
84 https://doi.org/10.2307/2408678
85 https://doi.org/10.2307/2413326
86 https://doi.org/10.2333/bhmk.18.30_65
87 schema:datePublished 2010-12
88 schema:datePublishedReg 2010-12-01
89 schema:description BACKGROUND: The quality of multiple sequence alignments plays an important role in the accuracy of phylogenetic inference. It has been shown that removing ambiguously aligned regions, but also other sources of bias such as highly variable (saturated) characters, can improve the overall performance of many phylogenetic reconstruction methods. A current scientific trend is to build phylogenetic trees from a large number of sequence datasets (semi-)automatically extracted from numerous complete genomes. Because these approaches do not allow a precise manual curation of each dataset, there exists a real need for efficient bioinformatic tools dedicated to this alignment character trimming step. RESULTS: Here is presented a new software, named BMGE (Block Mapping and Gathering with Entropy), that is designed to select regions in a multiple sequence alignment that are suited for phylogenetic inference. For each character, BMGE computes a score closely related to an entropy value. Calculation of these entropy-like scores is weighted with BLOSUM or PAM similarity matrices in order to distinguish among biologically expected and unexpected variability for each aligned character. Sets of contiguous characters with a score above a given threshold are considered as not suited for phylogenetic inference and then removed. Simulation analyses show that the character trimming performed by BMGE produces datasets leading to accurate trees, especially with alignments including distantly-related sequences. BMGE also implements trimming and recoding methods aimed at minimizing phylogeny reconstruction artefacts due to compositional heterogeneity. CONCLUSIONS: BMGE is able to perform biologically relevant trimming on a multiple alignment of DNA, codon or amino acid sequences. Java source code and executable are freely available at ftp://ftp.pasteur.fr/pub/GenSoft/projects/BMGE/.
90 schema:genre research_article
91 schema:inLanguage en
92 schema:isAccessibleForFree true
93 schema:isPartOf Nd362822aa77a4cbca69748ae80208be4
94 Ndd2b6f80559745438ad1ad50319fecd1
95 sg:journal.1024249
96 schema:name BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments
97 schema:pagination 210
98 schema:productId N6ebb8e26e2e3445cb80a76fafcefb6ee
99 N9aaad51c5ca249d49054985676ef82a3
100 N9d622694f9af4a3e8ff68deaa9149121
101 Na099e8061b06435b84fae4b5d829cf6b
102 Nd95cbd927b884285b7a8c192ba57e7e8
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001075316
104 https://doi.org/10.1186/1471-2148-10-210
105 schema:sdDatePublished 2019-04-10T18:26
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N0de0ff78a76149b986c51b023793ac71
108 schema:url http://link.springer.com/10.1186%2F1471-2148-10-210
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N0de0ff78a76149b986c51b023793ac71 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N128ec261d182468fab2b1d4b383382a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Computer Simulation
116 rdf:type schema:DefinedTerm
117 N1e048781f0a94baaa21dbbd39d42bd6c rdf:first sg:person.01175454264.86
118 rdf:rest Nbe0acd1eea4744e7a344e22d7040db15
119 N3134f923e17344099dd02a93bde23513 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Sequence Alignment
121 rdf:type schema:DefinedTerm
122 N38b564f3f41b4153a430100017013819 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Computational Biology
124 rdf:type schema:DefinedTerm
125 N458e8fa315a14239a85d227c55991040 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Algorithms
127 rdf:type schema:DefinedTerm
128 N6ebb8e26e2e3445cb80a76fafcefb6ee schema:name doi
129 schema:value 10.1186/1471-2148-10-210
130 rdf:type schema:PropertyValue
131 N8b92a47f81ad4e5cb3f550e335e20f85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Software
133 rdf:type schema:DefinedTerm
134 N9aaad51c5ca249d49054985676ef82a3 schema:name dimensions_id
135 schema:value pub.1001075316
136 rdf:type schema:PropertyValue
137 N9d622694f9af4a3e8ff68deaa9149121 schema:name pubmed_id
138 schema:value 20626897
139 rdf:type schema:PropertyValue
140 Na099e8061b06435b84fae4b5d829cf6b schema:name nlm_unique_id
141 schema:value 100966975
142 rdf:type schema:PropertyValue
143 Na0a2782ab466456e9ac7db21584a81fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Sequence Analysis, DNA
145 rdf:type schema:DefinedTerm
146 Nbe0acd1eea4744e7a344e22d7040db15 rdf:first sg:person.01301415104.16
147 rdf:rest rdf:nil
148 Nd362822aa77a4cbca69748ae80208be4 schema:volumeNumber 10
149 rdf:type schema:PublicationVolume
150 Nd95cbd927b884285b7a8c192ba57e7e8 schema:name readcube_id
151 schema:value 051f5464b9e20070bcf5dd2f667a7ce8dd6bbc71fc2fb66a190f313a1c9c18b4
152 rdf:type schema:PropertyValue
153 Ndd2b6f80559745438ad1ad50319fecd1 schema:issueNumber 1
154 rdf:type schema:PublicationIssue
155 Ndf9d025199364dc4a842cf7cd6ee1c21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Phylogeny
157 rdf:type schema:DefinedTerm
158 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
159 schema:name Mathematical Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
162 schema:name Statistics
163 rdf:type schema:DefinedTerm
164 sg:journal.1024249 schema:issn 1471-2148
165 schema:name BMC Evolutionary Biology
166 rdf:type schema:Periodical
167 sg:person.01175454264.86 schema:affiliation https://www.grid.ac/institutes/grid.428999.7
168 schema:familyName Criscuolo
169 schema:givenName Alexis
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175454264.86
171 rdf:type schema:Person
172 sg:person.01301415104.16 schema:affiliation https://www.grid.ac/institutes/grid.428999.7
173 schema:familyName Gribaldo
174 schema:givenName Simonetta
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301415104.16
176 rdf:type schema:Person
177 sg:pub.10.1007/bf00178256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012226005
178 https://doi.org/10.1007/bf00178256
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/bf01734359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065382
181 https://doi.org/10.1007/bf01734359
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/bf02101990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003359288
184 https://doi.org/10.1007/bf02101990
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/bf02498640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458196
187 https://doi.org/10.1007/bf02498640
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s00239-009-9212-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034424824
190 https://doi.org/10.1007/s00239-009-9212-y
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s002399910038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041828088
193 https://doi.org/10.1007/s002399910038
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nature02053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029791427
196 https://doi.org/10.1038/nature02053
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nbt0804-1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006061272
199 https://doi.org/10.1038/nbt0804-1035
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1471-2105-5-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040413794
202 https://doi.org/10.1186/1471-2105-5-113
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/1748-7188-3-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008822563
205 https://doi.org/10.1186/1748-7188-3-7
206 rdf:type schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1077879115 schema:CreativeWork
208 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/0022-2836(91)90528-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1038403355
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0893-9659(94)90024-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046058190
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.cub.2005.06.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001685312
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.patrec.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701558
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.sbi.2006.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039864920
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0001-2998(78)80014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035405952
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0022-5193(05)80104-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053616169
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0022-5193(86)80075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017782718
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s1046-2023(05)80165-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045903080
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s1385-7258(52)50042-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027915302
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1042/bj1200449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048366177
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0807880106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024349849
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.89.22.10915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234644
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.91.4.1455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028025978
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1080/01621459.1946.10501898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058298755
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1080/01621459.1948.10483284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058298852
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1080/10635150390235520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369386
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1080/10635150490468648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369451
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1080/10635150500354688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369504
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1080/10635150500541722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369543
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1080/10635150500541730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369544
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1080/10635150600755453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369615
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1080/10635150600999150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369644
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1080/10635150701472164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019116948
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/bioinformatics/13.3.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044605581
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/bioinformatics/8.3.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414153
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/bioinformatics/btl064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016335638
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/btp348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020601630
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/bioinformatics/btp493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039556714
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/biomet/42.3-4.412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416493
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/molbev/msh137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046189146
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/molbev/msh156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051314407
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/molbev/msl170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001558918
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/molbev/msm089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028886218
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1093/molbev/msm144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021757450
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1093/molbev/msn034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025224311
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1093/nar/18.20.6097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041886714
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/nar/gkm899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030802805
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1093/oxfordjournals.molbev.a025779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004074396
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1093/oxfordjournals.molbev.a025808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035839794
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1093/oxfordjournals.molbev.a025991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036857539
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1093/oxfordjournals.molbev.a026334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037148423
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1093/oxfordjournals.molbev.a040136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077890503
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1093/oxfordjournals.molbev.a040182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027055621
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1093/oxfordjournals.molbev.a040654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078204592
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1093/sysbio/43.4.578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060048197
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1093/sysbio/syq010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046004748
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1096/fasebj.7.1.8422957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082800679
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1098/rsbl.2008.0224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030772117
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1098/rstb.2002.1190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048790324
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1101/gr.187002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034683661
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1109/tcbb.2009.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540740
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1110/ps.03323604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048320527
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1111/j.1096-0031.1999.tb00277.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028692737
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1126/science.1123061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043495787
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1126/science.3287615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604299
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1148/radiology.143.1.7063747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082130998
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1214/aoms/1177731710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402410
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1351/pac197231040639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007565040
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1371/journal.pcbi.0030123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020024759
331 rdf:type schema:CreativeWork
332 https://doi.org/10.2307/2408678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069917669
333 rdf:type schema:CreativeWork
334 https://doi.org/10.2307/2413326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921597
335 rdf:type schema:CreativeWork
336 https://doi.org/10.2333/bhmk.18.30_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043574039
337 rdf:type schema:CreativeWork
338 https://www.grid.ac/institutes/grid.428999.7 schema:alternateName Institut Pasteur
339 schema:name Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr Roux, 75015, Paris, France
340 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...