Ontology type: schema:ScholarlyArticle Open Access: True
2010-06-02
AUTHORSSean D Schoville, George K Roderick
ABSTRACTBackgroundClimate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta). The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta.ResultsOur analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of Grylloblatta in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine Grylloblatta populations. Based on calibrated relaxed clock estimates, evolutionary diversification of Grylloblatta occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch.ConclusionsGrylloblatta species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations, suggesting alpine populations may track expanding glacial ice sheets and diversify as a result of multiple glacial advances. Based on relaxed-clock molecular dating, the temporal diversification of Grylloblatta provides evidence for the role of a climate-driven species pump in alpine species during the Pleistocene epoch. More... »
PAGES163
http://scigraph.springernature.com/pub.10.1186/1471-2148-10-163
DOIhttp://dx.doi.org/10.1186/1471-2148-10-163
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017427008
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/20525203
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Ecology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bayes Theorem",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "California",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Nucleus",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Climate Change",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "DNA, Mitochondrial",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Ecosystem",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Evolution, Molecular",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genes, Insect",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genetics, Population",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Geography",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Ice Cover",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Insecta",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Genetic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Phylogeny",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Analysis, DNA",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Environmental Science, Policy and Management, University of California, Berkeley, 137 Mulford Hall #3114, 94720-3114, Berkeley, CA, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Department of Environmental Science, Policy and Management, University of California, Berkeley, 137 Mulford Hall #3114, 94720-3114, Berkeley, CA, USA"
],
"type": "Organization"
},
"familyName": "Schoville",
"givenName": "Sean D",
"id": "sg:person.0732065563.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732065563.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Environmental Science, Policy and Management, University of California, Berkeley, 137 Mulford Hall #3114, 94720-3114, Berkeley, CA, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Department of Environmental Science, Policy and Management, University of California, Berkeley, 137 Mulford Hall #3114, 94720-3114, Berkeley, CA, USA"
],
"type": "Organization"
},
"familyName": "Roderick",
"givenName": "George K",
"id": "sg:person.01077676271.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077676271.09"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/3-540-27043-4_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033344901",
"https://doi.org/10.1007/3-540-27043-4_17"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2148-7-214",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010584451",
"https://doi.org/10.1186/1471-2148-7-214"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10709-005-2095-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013450365",
"https://doi.org/10.1007/s10709-005-2095-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-06-02",
"datePublishedReg": "2010-06-02",
"description": "BackgroundClimate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta). The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta.ResultsOur analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of Grylloblatta in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine Grylloblatta populations. Based on calibrated relaxed clock estimates, evolutionary diversification of Grylloblatta occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch.ConclusionsGrylloblatta species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations, suggesting alpine populations may track expanding glacial ice sheets and diversify as a result of multiple glacial advances. Based on relaxed-clock molecular dating, the temporal diversification of Grylloblatta provides evidence for the role of a climate-driven species pump in alpine species during the Pleistocene epoch.",
"genre": "article",
"id": "sg:pub.10.1186/1471-2148-10-163",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1024249",
"issn": [
"2730-7182"
],
"name": "BMC Ecology and Evolution",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"low-elevation populations",
"genetic subdivision",
"evolutionary diversification",
"alpine species",
"alpine habitats",
"alpine populations",
"temporal diversification",
"Pleistocene epoch",
"Bayesian relaxed clock model",
"multi-locus genetic data",
"shallow genetic differentiation",
"deep genetic subdivisions",
"distinct glacial refugia",
"history of dispersal",
"most recent common ancestor",
"recent common ancestor",
"relaxed clock model",
"Pliocene-Pleistocene epochs",
"relaxed-clock estimates",
"Middle Pleistocene epoch",
"genetic differentiation",
"historical climate change",
"species complex",
"molecular dating",
"glacial refugia",
"phylogenetic relationships",
"diversification patterns",
"common ancestor",
"geographic structure",
"range shifts",
"clock estimates",
"Grylloblatta",
"genetic data",
"geographic patterns",
"species",
"particular climatic events",
"initial dispersal",
"diversification",
"habitats",
"dispersal",
"clock model",
"climatic events",
"glacial ice sheets",
"climatic changes",
"glaciated drainage basins",
"mountain ranges",
"climate change",
"extreme variation",
"Sierra Nevada",
"clade",
"refugia",
"Pliocene",
"ancestor",
"BackgroundClimate",
"organisms",
"population",
"differentiation",
"large geographical area",
"patterns",
"subdivision",
"high degree",
"California",
"sister",
"geographical areas",
"complexes",
"role",
"glacial advances",
"changes",
"drainage basin",
"variation",
"contrast",
"Nevada",
"advances",
"events",
"importance",
"evidence",
"structure",
"more information",
"expansion",
"shift",
"analysis",
"alpine glaciers",
"relationship",
"multiple glacial advances",
"effect",
"basin",
"area",
"range",
"data",
"information",
"results",
"contraction",
"history",
"degree",
"estimates",
"time",
"glaciers",
"model",
"dating",
"ice sheet",
"ResultsOur analysis",
"epoch",
"sheets",
"measurement of time",
"measurements"
],
"name": "Evolutionary diversification of cryophilic Grylloblattaspecies (Grylloblattodea: Grylloblattidae) in alpine habitats of California",
"pagination": "163",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017427008"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1471-2148-10-163"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"20525203"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1471-2148-10-163",
"https://app.dimensions.ai/details/publication/pub.1017427008"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_508.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/1471-2148-10-163"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-163'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-163'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-163'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-163'
This table displays all metadata directly associated to this object as RDF triples.
253 TRIPLES
22 PREDICATES
151 URIs
139 LITERALS
23 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/1471-2148-10-163 | schema:about | N324fc2407d3349e09843db145ab6739e |
2 | ″ | ″ | N3d5b7ac3110e49839718ee6152e14fd1 |
3 | ″ | ″ | N42a6031026f847088cf02855e0a99072 |
4 | ″ | ″ | N6552c2dc646b40dea370e5bf9ddfca7a |
5 | ″ | ″ | N8473b932926a4c9f9697409194e2a603 |
6 | ″ | ″ | N88119af366a148fa82dcc058598e12ef |
7 | ″ | ″ | N97a70e8eb3a44c1ab38db98ffa6a289d |
8 | ″ | ″ | Na83981a609424ced920e1704f48403a7 |
9 | ″ | ″ | Na98c685cc93a44fe9ed26043d6812894 |
10 | ″ | ″ | Nc520f12507a1490c9db57a881692430a |
11 | ″ | ″ | Ncd1092f2492f4280b57dae5ad8b767a5 |
12 | ″ | ″ | Ncf5a680c07624e7495d2010ebf7043c3 |
13 | ″ | ″ | Ndf56c03f420d4f88b78ee7138ed7f50d |
14 | ″ | ″ | Ned808de3f9f5448cbea0abfb83939f1c |
15 | ″ | ″ | Nf2b911bff77a452bb07ac0f5b2cd1bd3 |
16 | ″ | ″ | Nf304c51d3dfb4ca294c79d1dbf89bbad |
17 | ″ | ″ | anzsrc-for:06 |
18 | ″ | ″ | anzsrc-for:0602 |
19 | ″ | ″ | anzsrc-for:0604 |
20 | ″ | schema:author | Nf01ec873200b4a48838ff3304d06c952 |
21 | ″ | schema:citation | sg:pub.10.1007/3-540-27043-4_17 |
22 | ″ | ″ | sg:pub.10.1007/s10709-005-2095-y |
23 | ″ | ″ | sg:pub.10.1186/1471-2148-7-214 |
24 | ″ | schema:datePublished | 2010-06-02 |
25 | ″ | schema:datePublishedReg | 2010-06-02 |
26 | ″ | schema:description | BackgroundClimate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta). The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta.ResultsOur analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of Grylloblatta in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine Grylloblatta populations. Based on calibrated relaxed clock estimates, evolutionary diversification of Grylloblatta occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch.ConclusionsGrylloblatta species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations, suggesting alpine populations may track expanding glacial ice sheets and diversify as a result of multiple glacial advances. Based on relaxed-clock molecular dating, the temporal diversification of Grylloblatta provides evidence for the role of a climate-driven species pump in alpine species during the Pleistocene epoch. |
27 | ″ | schema:genre | article |
28 | ″ | schema:inLanguage | en |
29 | ″ | schema:isAccessibleForFree | true |
30 | ″ | schema:isPartOf | N4e7b1aa9f79249659c2a493b12994895 |
31 | ″ | ″ | N710dae93c49b4f718649f2be8a4a7b9c |
32 | ″ | ″ | sg:journal.1024249 |
33 | ″ | schema:keywords | BackgroundClimate |
34 | ″ | ″ | Bayesian relaxed clock model |
35 | ″ | ″ | California |
36 | ″ | ″ | Grylloblatta |
37 | ″ | ″ | Middle Pleistocene epoch |
38 | ″ | ″ | Nevada |
39 | ″ | ″ | Pleistocene epoch |
40 | ″ | ″ | Pliocene |
41 | ″ | ″ | Pliocene-Pleistocene epochs |
42 | ″ | ″ | ResultsOur analysis |
43 | ″ | ″ | Sierra Nevada |
44 | ″ | ″ | advances |
45 | ″ | ″ | alpine glaciers |
46 | ″ | ″ | alpine habitats |
47 | ″ | ″ | alpine populations |
48 | ″ | ″ | alpine species |
49 | ″ | ″ | analysis |
50 | ″ | ″ | ancestor |
51 | ″ | ″ | area |
52 | ″ | ″ | basin |
53 | ″ | ″ | changes |
54 | ″ | ″ | clade |
55 | ″ | ″ | climate change |
56 | ″ | ″ | climatic changes |
57 | ″ | ″ | climatic events |
58 | ″ | ″ | clock estimates |
59 | ″ | ″ | clock model |
60 | ″ | ″ | common ancestor |
61 | ″ | ″ | complexes |
62 | ″ | ″ | contraction |
63 | ″ | ″ | contrast |
64 | ″ | ″ | data |
65 | ″ | ″ | dating |
66 | ″ | ″ | deep genetic subdivisions |
67 | ″ | ″ | degree |
68 | ″ | ″ | differentiation |
69 | ″ | ″ | dispersal |
70 | ″ | ″ | distinct glacial refugia |
71 | ″ | ″ | diversification |
72 | ″ | ″ | diversification patterns |
73 | ″ | ″ | drainage basin |
74 | ″ | ″ | effect |
75 | ″ | ″ | epoch |
76 | ″ | ″ | estimates |
77 | ″ | ″ | events |
78 | ″ | ″ | evidence |
79 | ″ | ″ | evolutionary diversification |
80 | ″ | ″ | expansion |
81 | ″ | ″ | extreme variation |
82 | ″ | ″ | genetic data |
83 | ″ | ″ | genetic differentiation |
84 | ″ | ″ | genetic subdivision |
85 | ″ | ″ | geographic patterns |
86 | ″ | ″ | geographic structure |
87 | ″ | ″ | geographical areas |
88 | ″ | ″ | glacial advances |
89 | ″ | ″ | glacial ice sheets |
90 | ″ | ″ | glacial refugia |
91 | ″ | ″ | glaciated drainage basins |
92 | ″ | ″ | glaciers |
93 | ″ | ″ | habitats |
94 | ″ | ″ | high degree |
95 | ″ | ″ | historical climate change |
96 | ″ | ″ | history |
97 | ″ | ″ | history of dispersal |
98 | ″ | ″ | ice sheet |
99 | ″ | ″ | importance |
100 | ″ | ″ | information |
101 | ″ | ″ | initial dispersal |
102 | ″ | ″ | large geographical area |
103 | ″ | ″ | low-elevation populations |
104 | ″ | ″ | measurement of time |
105 | ″ | ″ | measurements |
106 | ″ | ″ | model |
107 | ″ | ″ | molecular dating |
108 | ″ | ″ | more information |
109 | ″ | ″ | most recent common ancestor |
110 | ″ | ″ | mountain ranges |
111 | ″ | ″ | multi-locus genetic data |
112 | ″ | ″ | multiple glacial advances |
113 | ″ | ″ | organisms |
114 | ″ | ″ | particular climatic events |
115 | ″ | ″ | patterns |
116 | ″ | ″ | phylogenetic relationships |
117 | ″ | ″ | population |
118 | ″ | ″ | range |
119 | ″ | ″ | range shifts |
120 | ″ | ″ | recent common ancestor |
121 | ″ | ″ | refugia |
122 | ″ | ″ | relationship |
123 | ″ | ″ | relaxed clock model |
124 | ″ | ″ | relaxed-clock estimates |
125 | ″ | ″ | results |
126 | ″ | ″ | role |
127 | ″ | ″ | shallow genetic differentiation |
128 | ″ | ″ | sheets |
129 | ″ | ″ | shift |
130 | ″ | ″ | sister |
131 | ″ | ″ | species |
132 | ″ | ″ | species complex |
133 | ″ | ″ | structure |
134 | ″ | ″ | subdivision |
135 | ″ | ″ | temporal diversification |
136 | ″ | ″ | time |
137 | ″ | ″ | variation |
138 | ″ | schema:name | Evolutionary diversification of cryophilic Grylloblattaspecies (Grylloblattodea: Grylloblattidae) in alpine habitats of California |
139 | ″ | schema:pagination | 163 |
140 | ″ | schema:productId | N168f5be06351414dba9beae415fd9cba |
141 | ″ | ″ | N49553f4190f748d69a012dfe34e7c941 |
142 | ″ | ″ | N50923b279fbd4006b3ad44f523c6af74 |
143 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017427008 |
144 | ″ | ″ | https://doi.org/10.1186/1471-2148-10-163 |
145 | ″ | schema:sdDatePublished | 2022-05-10T10:00 |
146 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
147 | ″ | schema:sdPublisher | N60f17cc3a8654393b1af685e3b88ddd1 |
148 | ″ | schema:url | https://doi.org/10.1186/1471-2148-10-163 |
149 | ″ | sgo:license | sg:explorer/license/ |
150 | ″ | sgo:sdDataset | articles |
151 | ″ | rdf:type | schema:ScholarlyArticle |
152 | N168f5be06351414dba9beae415fd9cba | schema:name | doi |
153 | ″ | schema:value | 10.1186/1471-2148-10-163 |
154 | ″ | rdf:type | schema:PropertyValue |
155 | N324fc2407d3349e09843db145ab6739e | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
156 | ″ | schema:name | Models, Genetic |
157 | ″ | rdf:type | schema:DefinedTerm |
158 | N3d5b7ac3110e49839718ee6152e14fd1 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
159 | ″ | schema:name | Bayes Theorem |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | N42a6031026f847088cf02855e0a99072 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
162 | ″ | schema:name | Cell Nucleus |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | N49553f4190f748d69a012dfe34e7c941 | schema:name | pubmed_id |
165 | ″ | schema:value | 20525203 |
166 | ″ | rdf:type | schema:PropertyValue |
167 | N4e7b1aa9f79249659c2a493b12994895 | schema:issueNumber | 1 |
168 | ″ | rdf:type | schema:PublicationIssue |
169 | N50923b279fbd4006b3ad44f523c6af74 | schema:name | dimensions_id |
170 | ″ | schema:value | pub.1017427008 |
171 | ″ | rdf:type | schema:PropertyValue |
172 | N52e7df8eea104b5a86dad252b2bf2ec5 | rdf:first | sg:person.01077676271.09 |
173 | ″ | rdf:rest | rdf:nil |
174 | N60f17cc3a8654393b1af685e3b88ddd1 | schema:name | Springer Nature - SN SciGraph project |
175 | ″ | rdf:type | schema:Organization |
176 | N6552c2dc646b40dea370e5bf9ddfca7a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
177 | ″ | schema:name | California |
178 | ″ | rdf:type | schema:DefinedTerm |
179 | N710dae93c49b4f718649f2be8a4a7b9c | schema:volumeNumber | 10 |
180 | ″ | rdf:type | schema:PublicationVolume |
181 | N8473b932926a4c9f9697409194e2a603 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
182 | ″ | schema:name | DNA, Mitochondrial |
183 | ″ | rdf:type | schema:DefinedTerm |
184 | N88119af366a148fa82dcc058598e12ef | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
185 | ″ | schema:name | Phylogeny |
186 | ″ | rdf:type | schema:DefinedTerm |
187 | N97a70e8eb3a44c1ab38db98ffa6a289d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
188 | ″ | schema:name | Ice Cover |
189 | ″ | rdf:type | schema:DefinedTerm |
190 | Na83981a609424ced920e1704f48403a7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
191 | ″ | schema:name | Geography |
192 | ″ | rdf:type | schema:DefinedTerm |
193 | Na98c685cc93a44fe9ed26043d6812894 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
194 | ″ | schema:name | Evolution, Molecular |
195 | ″ | rdf:type | schema:DefinedTerm |
196 | Nc520f12507a1490c9db57a881692430a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
197 | ″ | schema:name | Ecosystem |
198 | ″ | rdf:type | schema:DefinedTerm |
199 | Ncd1092f2492f4280b57dae5ad8b767a5 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
200 | ″ | schema:name | Sequence Analysis, DNA |
201 | ″ | rdf:type | schema:DefinedTerm |
202 | Ncf5a680c07624e7495d2010ebf7043c3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
203 | ″ | schema:name | Genes, Insect |
204 | ″ | rdf:type | schema:DefinedTerm |
205 | Ndf56c03f420d4f88b78ee7138ed7f50d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
206 | ″ | schema:name | Insecta |
207 | ″ | rdf:type | schema:DefinedTerm |
208 | Ned808de3f9f5448cbea0abfb83939f1c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
209 | ″ | schema:name | Climate Change |
210 | ″ | rdf:type | schema:DefinedTerm |
211 | Nf01ec873200b4a48838ff3304d06c952 | rdf:first | sg:person.0732065563.17 |
212 | ″ | rdf:rest | N52e7df8eea104b5a86dad252b2bf2ec5 |
213 | Nf2b911bff77a452bb07ac0f5b2cd1bd3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
214 | ″ | schema:name | Animals |
215 | ″ | rdf:type | schema:DefinedTerm |
216 | Nf304c51d3dfb4ca294c79d1dbf89bbad | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
217 | ″ | schema:name | Genetics, Population |
218 | ″ | rdf:type | schema:DefinedTerm |
219 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
220 | ″ | schema:name | Biological Sciences |
221 | ″ | rdf:type | schema:DefinedTerm |
222 | anzsrc-for:0602 | schema:inDefinedTermSet | anzsrc-for: |
223 | ″ | schema:name | Ecology |
224 | ″ | rdf:type | schema:DefinedTerm |
225 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
226 | ″ | schema:name | Genetics |
227 | ″ | rdf:type | schema:DefinedTerm |
228 | sg:journal.1024249 | schema:issn | 2730-7182 |
229 | ″ | schema:name | BMC Ecology and Evolution |
230 | ″ | schema:publisher | Springer Nature |
231 | ″ | rdf:type | schema:Periodical |
232 | sg:person.01077676271.09 | schema:affiliation | grid-institutes:grid.47840.3f |
233 | ″ | schema:familyName | Roderick |
234 | ″ | schema:givenName | George K |
235 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077676271.09 |
236 | ″ | rdf:type | schema:Person |
237 | sg:person.0732065563.17 | schema:affiliation | grid-institutes:grid.47840.3f |
238 | ″ | schema:familyName | Schoville |
239 | ″ | schema:givenName | Sean D |
240 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732065563.17 |
241 | ″ | rdf:type | schema:Person |
242 | sg:pub.10.1007/3-540-27043-4_17 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033344901 |
243 | ″ | ″ | https://doi.org/10.1007/3-540-27043-4_17 |
244 | ″ | rdf:type | schema:CreativeWork |
245 | sg:pub.10.1007/s10709-005-2095-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013450365 |
246 | ″ | ″ | https://doi.org/10.1007/s10709-005-2095-y |
247 | ″ | rdf:type | schema:CreativeWork |
248 | sg:pub.10.1186/1471-2148-7-214 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010584451 |
249 | ″ | ″ | https://doi.org/10.1186/1471-2148-7-214 |
250 | ″ | rdf:type | schema:CreativeWork |
251 | grid-institutes:grid.47840.3f | schema:alternateName | Department of Environmental Science, Policy and Management, University of California, Berkeley, 137 Mulford Hall #3114, 94720-3114, Berkeley, CA, USA |
252 | ″ | schema:name | Department of Environmental Science, Policy and Management, University of California, Berkeley, 137 Mulford Hall #3114, 94720-3114, Berkeley, CA, USA |
253 | ″ | rdf:type | schema:Organization |