Functional bias in molecular evolution rate of Arabidopsis thaliana View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-05-01

AUTHORS

Andrew S Warren, Ramu Anandakrishnan, Liqing Zhang

ABSTRACT

BACKGROUND: Characteristics derived from mutation and other mechanisms that are advantageous for survival are often preserved during evolution by natural selection. Some genes are conserved in many organisms because they are responsible for fundamental biological function, others are conserved for their unique functional characteristics. Therefore one would expect the rate of molecular evolution for individual genes to be dependent on their biological function. Whether this expectation holds for genes duplicated by whole genome duplication is not known. RESULTS: We empirically demonstrate here, using duplicated genes generated from the Arabidopsis thaliana alpha-duplication event, that the rate of molecular evolution of genes duplicated in this event depend on biological function. Using functional clustering based on gene ontology annotation of gene pairs, we show that some duplicated genes, such as defense response genes, are under weaker purifying selection or under stronger diversifying selection than other duplicated genes, such as protein translation genes, as measured by the ratio of nonsynonymous to synonymous divergence (dN/dS). CONCLUSIONS: These results provide empirical evidence indicating that molecular evolution rate for genes duplicated in whole genome duplication, as measured by dN/dS, may depend on biological function, which we characterize using gene ontology annotation. Furthermore, the general approach used here provides a framework for comparative analysis of molecular evolution rate for genes based on their biological function. More... »

PAGES

125-125

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-10-125

DOI

http://dx.doi.org/10.1186/1471-2148-10-125

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012830728

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20433764


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Duplication", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Warren", 
        "givenName": "Andrew S", 
        "id": "sg:person.01247067724.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247067724.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anandakrishnan", 
        "givenName": "Ramu", 
        "id": "sg:person.01146510157.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146510157.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA", 
            "Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Liqing", 
        "id": "sg:person.01371416150.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371416150.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002399910001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012646014", 
          "https://doi.org/10.1007/s002399910001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01796108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014816626", 
          "https://doi.org/10.1007/bf01796108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011524879", 
          "https://doi.org/10.1038/nrg2158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032071527", 
          "https://doi.org/10.1186/1471-2105-8-112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005385099", 
          "https://doi.org/10.1038/ng1543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-5-reviews1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051671047", 
          "https://doi.org/10.1186/gb-2002-3-5-reviews1012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029147952", 
          "https://doi.org/10.1186/1471-2105-8-166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024627077", 
          "https://doi.org/10.1038/nature01521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35038066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031170190", 
          "https://doi.org/10.1038/35038066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-4-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023232151", 
          "https://doi.org/10.1186/1471-2148-4-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-7-66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031667720", 
          "https://doi.org/10.1186/1471-2148-7-66"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05-01", 
    "datePublishedReg": "2010-05-01", 
    "description": "BACKGROUND: Characteristics derived from mutation and other mechanisms that are advantageous for survival are often preserved during evolution by natural selection. Some genes are conserved in many organisms because they are responsible for fundamental biological function, others are conserved for their unique functional characteristics. Therefore one would expect the rate of molecular evolution for individual genes to be dependent on their biological function. Whether this expectation holds for genes duplicated by whole genome duplication is not known.\nRESULTS: We empirically demonstrate here, using duplicated genes generated from the Arabidopsis thaliana alpha-duplication event, that the rate of molecular evolution of genes duplicated in this event depend on biological function. Using functional clustering based on gene ontology annotation of gene pairs, we show that some duplicated genes, such as defense response genes, are under weaker purifying selection or under stronger diversifying selection than other duplicated genes, such as protein translation genes, as measured by the ratio of nonsynonymous to synonymous divergence (dN/dS).\nCONCLUSIONS: These results provide empirical evidence indicating that molecular evolution rate for genes duplicated in whole genome duplication, as measured by dN/dS, may depend on biological function, which we characterize using gene ontology annotation. Furthermore, the general approach used here provides a framework for comparative analysis of molecular evolution rate for genes based on their biological function.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2148-10-125", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "molecular evolution rate", 
      "whole genome duplication", 
      "Gene Ontology annotations", 
      "biological functions", 
      "genome duplication", 
      "molecular evolution", 
      "Ontology annotations", 
      "defense response genes", 
      "strong diversifying selection", 
      "dN/dS", 
      "fundamental biological functions", 
      "translation genes", 
      "synonymous divergence", 
      "Arabidopsis thaliana", 
      "diversifying selection", 
      "gene pairs", 
      "individual genes", 
      "natural selection", 
      "unique functional characteristics", 
      "response genes", 
      "functional bias", 
      "functional clustering", 
      "genes", 
      "evolution rate", 
      "duplication", 
      "functional characteristics", 
      "annotation", 
      "thaliana", 
      "evolution", 
      "organisms", 
      "selection", 
      "comparative analysis", 
      "mutations", 
      "divergence", 
      "function", 
      "events", 
      "mechanism", 
      "survival", 
      "pairs", 
      "evidence", 
      "clustering", 
      "rate", 
      "analysis", 
      "general approach", 
      "DS", 
      "characteristics", 
      "results", 
      "approach", 
      "empirical evidence", 
      "ratio", 
      "bias", 
      "expectations", 
      "framework", 
      "Arabidopsis thaliana alpha-duplication event", 
      "thaliana alpha-duplication event", 
      "alpha-duplication event", 
      "protein translation genes"
    ], 
    "name": "Functional bias in molecular evolution rate of Arabidopsis thaliana", 
    "pagination": "125-125", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012830728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-10-125"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20433764"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-10-125", 
      "https://app.dimensions.ai/details/publication/pub.1012830728"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2148-10-125"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-125'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-125'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-125'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-10-125'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      98 URIs      79 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-10-125 schema:about N567f3621024f4720b878d2cb916cdfea
2 N7f29a9cc3b364304b5f5f6d9d48394e1
3 Nc1cd4a20ce32482081f5f6ab706fd805
4 Neaef40e4e2fb439fb2bd6bb1680a80c8
5 anzsrc-for:06
6 anzsrc-for:0604
7 schema:author N41a63523cf8647fa94d3c1c85e5c014c
8 schema:citation sg:pub.10.1007/bf01796108
9 sg:pub.10.1007/s002399910001
10 sg:pub.10.1038/35038066
11 sg:pub.10.1038/nature01521
12 sg:pub.10.1038/ng1543
13 sg:pub.10.1038/nrg2158
14 sg:pub.10.1186/1471-2105-8-112
15 sg:pub.10.1186/1471-2105-8-166
16 sg:pub.10.1186/1471-2148-4-22
17 sg:pub.10.1186/1471-2148-7-66
18 sg:pub.10.1186/gb-2002-3-5-reviews1012
19 schema:datePublished 2010-05-01
20 schema:datePublishedReg 2010-05-01
21 schema:description BACKGROUND: Characteristics derived from mutation and other mechanisms that are advantageous for survival are often preserved during evolution by natural selection. Some genes are conserved in many organisms because they are responsible for fundamental biological function, others are conserved for their unique functional characteristics. Therefore one would expect the rate of molecular evolution for individual genes to be dependent on their biological function. Whether this expectation holds for genes duplicated by whole genome duplication is not known. RESULTS: We empirically demonstrate here, using duplicated genes generated from the Arabidopsis thaliana alpha-duplication event, that the rate of molecular evolution of genes duplicated in this event depend on biological function. Using functional clustering based on gene ontology annotation of gene pairs, we show that some duplicated genes, such as defense response genes, are under weaker purifying selection or under stronger diversifying selection than other duplicated genes, such as protein translation genes, as measured by the ratio of nonsynonymous to synonymous divergence (dN/dS). CONCLUSIONS: These results provide empirical evidence indicating that molecular evolution rate for genes duplicated in whole genome duplication, as measured by dN/dS, may depend on biological function, which we characterize using gene ontology annotation. Furthermore, the general approach used here provides a framework for comparative analysis of molecular evolution rate for genes based on their biological function.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N415b1dea023b45ec8dd07950819aba3d
26 Nbd21c08b20084d39a0a9a6493b608ff1
27 sg:journal.1024249
28 schema:keywords Arabidopsis thaliana
29 Arabidopsis thaliana alpha-duplication event
30 DS
31 Gene Ontology annotations
32 Ontology annotations
33 alpha-duplication event
34 analysis
35 annotation
36 approach
37 bias
38 biological functions
39 characteristics
40 clustering
41 comparative analysis
42 dN/dS
43 defense response genes
44 divergence
45 diversifying selection
46 duplication
47 empirical evidence
48 events
49 evidence
50 evolution
51 evolution rate
52 expectations
53 framework
54 function
55 functional bias
56 functional characteristics
57 functional clustering
58 fundamental biological functions
59 gene pairs
60 general approach
61 genes
62 genome duplication
63 individual genes
64 mechanism
65 molecular evolution
66 molecular evolution rate
67 mutations
68 natural selection
69 organisms
70 pairs
71 protein translation genes
72 rate
73 ratio
74 response genes
75 results
76 selection
77 strong diversifying selection
78 survival
79 synonymous divergence
80 thaliana
81 thaliana alpha-duplication event
82 translation genes
83 unique functional characteristics
84 whole genome duplication
85 schema:name Functional bias in molecular evolution rate of Arabidopsis thaliana
86 schema:pagination 125-125
87 schema:productId N6bf448a85bab46a89da0dd380343287c
88 Nc522cab11799408fa8f502fe5201696c
89 Ndb6a270366114b5a8703b2c4fed5165b
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012830728
91 https://doi.org/10.1186/1471-2148-10-125
92 schema:sdDatePublished 2022-01-01T18:21
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nd380cb6834244e8198815f3c6708c94f
95 schema:url https://doi.org/10.1186/1471-2148-10-125
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N415b1dea023b45ec8dd07950819aba3d schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N41a63523cf8647fa94d3c1c85e5c014c rdf:first sg:person.01247067724.51
102 rdf:rest N7daeab38ea4f4075b8d1bcd54a926f45
103 N4878a6864fd74564bbda62d65706869a rdf:first sg:person.01371416150.16
104 rdf:rest rdf:nil
105 N567f3621024f4720b878d2cb916cdfea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Gene Duplication
107 rdf:type schema:DefinedTerm
108 N6bf448a85bab46a89da0dd380343287c schema:name dimensions_id
109 schema:value pub.1012830728
110 rdf:type schema:PropertyValue
111 N7daeab38ea4f4075b8d1bcd54a926f45 rdf:first sg:person.01146510157.11
112 rdf:rest N4878a6864fd74564bbda62d65706869a
113 N7f29a9cc3b364304b5f5f6d9d48394e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Evolution, Molecular
115 rdf:type schema:DefinedTerm
116 Nbd21c08b20084d39a0a9a6493b608ff1 schema:volumeNumber 10
117 rdf:type schema:PublicationVolume
118 Nc1cd4a20ce32482081f5f6ab706fd805 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Models, Genetic
120 rdf:type schema:DefinedTerm
121 Nc522cab11799408fa8f502fe5201696c schema:name doi
122 schema:value 10.1186/1471-2148-10-125
123 rdf:type schema:PropertyValue
124 Nd380cb6834244e8198815f3c6708c94f schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Ndb6a270366114b5a8703b2c4fed5165b schema:name pubmed_id
127 schema:value 20433764
128 rdf:type schema:PropertyValue
129 Neaef40e4e2fb439fb2bd6bb1680a80c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Arabidopsis
131 rdf:type schema:DefinedTerm
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
136 schema:name Genetics
137 rdf:type schema:DefinedTerm
138 sg:journal.1024249 schema:issn 1471-2148
139 schema:name BMC Evolutionary Biology
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01146510157.11 schema:affiliation grid-institutes:grid.438526.e
143 schema:familyName Anandakrishnan
144 schema:givenName Ramu
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146510157.11
146 rdf:type schema:Person
147 sg:person.01247067724.51 schema:affiliation grid-institutes:grid.438526.e
148 schema:familyName Warren
149 schema:givenName Andrew S
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247067724.51
151 rdf:type schema:Person
152 sg:person.01371416150.16 schema:affiliation grid-institutes:grid.438526.e
153 schema:familyName Zhang
154 schema:givenName Liqing
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371416150.16
156 rdf:type schema:Person
157 sg:pub.10.1007/bf01796108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014816626
158 https://doi.org/10.1007/bf01796108
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s002399910001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012646014
161 https://doi.org/10.1007/s002399910001
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/35038066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031170190
164 https://doi.org/10.1038/35038066
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature01521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024627077
167 https://doi.org/10.1038/nature01521
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ng1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005385099
170 https://doi.org/10.1038/ng1543
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nrg2158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524879
173 https://doi.org/10.1038/nrg2158
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2105-8-112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032071527
176 https://doi.org/10.1186/1471-2105-8-112
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2105-8-166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029147952
179 https://doi.org/10.1186/1471-2105-8-166
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2148-4-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023232151
182 https://doi.org/10.1186/1471-2148-4-22
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2148-7-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031667720
185 https://doi.org/10.1186/1471-2148-7-66
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/gb-2002-3-5-reviews1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051671047
188 https://doi.org/10.1186/gb-2002-3-5-reviews1012
189 rdf:type schema:CreativeWork
190 grid-institutes:grid.438526.e schema:alternateName Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
191 Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
192 schema:name Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
193 Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...