Genome trees constructed using five different approaches suggest new major bacterial clades View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-10-23

AUTHORS

Yuri I Wolf, Igor B Rogozin, Nick V Grishin, Roman L Tatusov, Eugene V Koonin

ABSTRACT

BackgroundThe availability of multiple complete genome sequences from diverse taxa prompts the development of new phylogenetic approaches, which attempt to incorporate information derived from comparative analysis of complete gene sets or large subsets thereof. Such attempts are particularly relevant because of the major role of horizontal gene transfer and lineage-specific gene loss, at least in the evolution of prokaryotes.ResultsFive largely independent approaches were employed to construct trees for completely sequenced bacterial and archaeal genomes: i) presence-absence of genomes in clusters of orthologous genes; ii) conservation of local gene order (gene pairs) among prokaryotic genomes; iii) parameters of identity distribution for probable orthologs; iv) analysis of concatenated alignments of ribosomal proteins; v) comparison of trees constructed for multiple protein families. All constructed trees support the separation of the two primary prokaryotic domains, bacteria and archaea, as well as some terminal bifurcations within the bacterial and archaeal domains. Beyond these obvious groupings, the trees made with different methods appeared to differ substantially in terms of the relative contributions of phylogenetic relationships and similarities in gene repertoires caused by similar life styles and horizontal gene transfer to the tree topology. The trees based on presence-absence of genomes in orthologous clusters and the trees based on conserved gene pairs appear to be strongly affected by gene loss and horizontal gene transfer. The trees based on identity distributions for orthologs and particularly the tree made of concatenated ribosomal protein sequences seemed to carry a stronger phylogenetic signal. The latter tree supported three potential high-level bacterial clades,: i) Chlamydia-Spirochetes, ii) Thermotogales-Aquificales (bacterial hyperthermophiles), and ii) Actinomycetes-Deinococcales-Cyanobacteria. The latter group also appeared to join the low-GC Gram-positive bacteria at a deeper tree node. These new groupings of bacteria were supported by the analysis of alternative topologies in the concatenated ribosomal protein tree using the Kishino-Hasegawa test and by a census of the topologies of 132 individual groups of orthologous proteins. Additionally, the results of this analysis put into question the sister-group relationship between the two major archaeal groups, Euryarchaeota and Crenarchaeota,and suggest instead that Euryarchaeota might be a paraphyletic group with respect to Crenarchaeota.ConclusionsWe conclude that, the extensive horizontal gene flow and lineage-specific gene loss notwithstanding, extension of phylogenetic analysis to the genome scale has the potential of uncovering deep evolutionary relationships between prokaryotic lineages. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2148-1-8

DOI

http://dx.doi.org/10.1186/1471-2148-1-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035042918

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11734060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Order", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Transfer, Horizontal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Archaeal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Archaeal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prokaryotic Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ribosomal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolf", 
        "givenName": "Yuri I", 
        "id": "sg:person.0634453251.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634453251.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogozin", 
        "givenName": "Igor B", 
        "id": "sg:person.0761703771.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761703771.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, 75390-9050, Dallas, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, 75390-9050, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grishin", 
        "givenName": "Nick V", 
        "id": "sg:person.015412226217.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412226217.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatusov", 
        "givenName": "Roman L", 
        "id": "sg:person.01360057351.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360057351.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.419234.9", 
          "name": [
            "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koonin", 
        "givenName": "Eugene V", 
        "id": "sg:person.01017015051.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/20601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050152586", 
          "https://doi.org/10.1038/20601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00175826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049478746", 
          "https://doi.org/10.1007/bf00175826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052228363", 
          "https://doi.org/10.1007/pl00006538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/5052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038696050", 
          "https://doi.org/10.1038/5052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/90129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537539", 
          "https://doi.org/10.1038/90129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047724218", 
          "https://doi.org/10.1007/pl00006580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002335077", 
          "https://doi.org/10.1007/pl00006241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022607788", 
          "https://doi.org/10.1007/pl00006155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02109483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019697953", 
          "https://doi.org/10.1007/bf02109483"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-10-23", 
    "datePublishedReg": "2001-10-23", 
    "description": "BackgroundThe availability of multiple complete genome sequences from diverse taxa prompts the development of new phylogenetic approaches, which attempt to incorporate information derived from comparative analysis of complete gene sets or large subsets thereof. Such attempts are particularly relevant because of the major role of horizontal gene transfer and lineage-specific gene loss, at least in the evolution of prokaryotes.ResultsFive largely independent approaches were employed to construct trees for completely sequenced bacterial and archaeal genomes: i) presence-absence of genomes in clusters of orthologous genes; ii) conservation of local gene order (gene pairs) among prokaryotic genomes; iii) parameters of identity distribution for probable orthologs; iv) analysis of concatenated alignments of ribosomal proteins; v) comparison of trees constructed for multiple protein families. All constructed trees support the separation of the two primary prokaryotic domains, bacteria and archaea, as well as some terminal bifurcations within the bacterial and archaeal domains. Beyond these obvious groupings, the trees made with different methods appeared to differ substantially in terms of the relative contributions of phylogenetic relationships and similarities in gene repertoires caused by similar life styles and horizontal gene transfer to the tree topology. The trees based on presence-absence of genomes in orthologous clusters and the trees based on conserved gene pairs appear to be strongly affected by gene loss and horizontal gene transfer. The trees based on identity distributions for orthologs and particularly the tree made of concatenated ribosomal protein sequences seemed to carry a stronger phylogenetic signal. The latter tree supported three potential high-level bacterial clades,: i) Chlamydia-Spirochetes, ii) Thermotogales-Aquificales (bacterial hyperthermophiles), and ii) Actinomycetes-Deinococcales-Cyanobacteria. The latter group also appeared to join the low-GC Gram-positive bacteria at a deeper tree node. These new groupings of bacteria were supported by the analysis of alternative topologies in the concatenated ribosomal protein tree using the Kishino-Hasegawa test and by a census of the topologies of 132 individual groups of orthologous proteins. Additionally, the results of this analysis put into question the sister-group relationship between the two major archaeal groups, Euryarchaeota and Crenarchaeota,and suggest instead that Euryarchaeota might be a paraphyletic group with respect to Crenarchaeota.ConclusionsWe conclude that, the extensive horizontal gene flow and lineage-specific gene loss notwithstanding, extension of phylogenetic analysis to the genome scale has the potential of uncovering deep evolutionary relationships between prokaryotic lineages.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2148-1-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "2730-7182"
        ], 
        "name": "BMC Ecology and Evolution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "horizontal gene transfer", 
      "lineage-specific gene loss", 
      "gene loss", 
      "bacterial clades", 
      "gene transfer", 
      "multiple complete genome sequences", 
      "GC Gram-positive bacteria", 
      "complete gene sets", 
      "local gene order", 
      "major archaeal groups", 
      "evolution of prokaryotes", 
      "deep evolutionary relationships", 
      "ribosomal protein sequences", 
      "major bacterial clades", 
      "strong phylogenetic signal", 
      "Kishino-Hasegawa test", 
      "horizontal gene flow", 
      "new phylogenetic approach", 
      "complete genome sequence", 
      "multiple protein families", 
      "sister-group relationship", 
      "identity distribution", 
      "probable orthologs", 
      "genome trees", 
      "comparison of trees", 
      "archaeal domain", 
      "prokaryotic domains", 
      "orthologous clusters", 
      "protein trees", 
      "orthologous genes", 
      "gene order", 
      "gene flow", 
      "prokaryotic lineages", 
      "archaeal genomes", 
      "phylogenetic signal", 
      "orthologous proteins", 
      "genome scale", 
      "evolutionary relationships", 
      "phylogenetic approach", 
      "phylogenetic relationships", 
      "archaeal groups", 
      "ribosomal proteins", 
      "prokaryotic genomes", 
      "gene pairs", 
      "protein family", 
      "phylogenetic analysis", 
      "genome sequence", 
      "gene repertoire", 
      "Gram-positive bacteria", 
      "paraphyletic group", 
      "gene sets", 
      "protein sequences", 
      "genome", 
      "similar life styles", 
      "latter tree", 
      "tree topology", 
      "orthologs", 
      "Crenarchaeota", 
      "clade", 
      "Euryarchaeota", 
      "alternative topologies", 
      "bacteria", 
      "obvious grouping", 
      "trees", 
      "protein", 
      "independent approaches", 
      "sequence", 
      "prokaryotes", 
      "archaea", 
      "cyanobacteria", 
      "major role", 
      "lineages", 
      "genes", 
      "relative contribution", 
      "new grouping", 
      "domain", 
      "large subset", 
      "conservation", 
      "comparative analysis", 
      "repertoire", 
      "life style", 
      "clusters", 
      "family", 
      "terminal bifurcation", 
      "loss", 
      "similarity", 
      "grouping", 
      "evolution", 
      "analysis", 
      "role", 
      "availability", 
      "individual groups", 
      "distribution", 
      "transfer", 
      "relationship", 
      "pairs", 
      "subset", 
      "alignment", 
      "signals", 
      "tree nodes", 
      "development", 
      "latter group", 
      "topology", 
      "potential", 
      "group", 
      "census", 
      "approach", 
      "different approaches", 
      "contribution", 
      "information", 
      "comparison", 
      "ConclusionsWe", 
      "set", 
      "results", 
      "different methods", 
      "such attempts", 
      "questions", 
      "attempt", 
      "respect", 
      "scale", 
      "extension", 
      "order", 
      "separation", 
      "method", 
      "terms", 
      "test", 
      "flow", 
      "parameters", 
      "nodes", 
      "bifurcation", 
      "style", 
      "ResultsFive", 
      "prompts"
    ], 
    "name": "Genome trees constructed using five different approaches suggest new major bacterial clades", 
    "pagination": "8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035042918"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2148-1-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11734060"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2148-1-8", 
      "https://app.dimensions.ai/details/publication/pub.1035042918"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_331.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2148-1-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-1-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-1-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-1-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2148-1-8'


 

This table displays all metadata directly associated to this object as RDF triples.

329 TRIPLES      22 PREDICATES      185 URIs      167 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2148-1-8 schema:about N1098e5336e0347dfab584210767e545b
2 N183b02df9af1411da3864954a6a70559
3 N1e98fbeeb09945fa8eeefbc8695a6da3
4 N395ce12ca51a4947b1fd8b3397ac0c77
5 N3c0371433b794fe98689d66467100d0f
6 N40a11fcaa8d34c8a9709b73faa37c92b
7 N455e36f3ed8c489e8cedff30e26aa1a8
8 N458b8bdd556f4a8fbfa7ad5708ad2f0c
9 N4b5b81bbe6dc4add9fa6ad1a30ebcbec
10 N624d0b43cbd64c3580f196670b406487
11 N8b3b1b025a22456ab2cac9a5fe98ab83
12 N985941f12b2b4ba784fbdbe64f8504c1
13 Nc2e34e379ea44168b1420ca86f00386a
14 Nc3158be0b34e43fb8e4828a1da66f990
15 Nc57b6660ed9f4e34a338301c2dff270f
16 Ne397fc80cc484980b3540f55ae105bc2
17 anzsrc-for:06
18 anzsrc-for:0604
19 anzsrc-for:0605
20 schema:author N4a22ab15a413442bae7de6d40b92439a
21 schema:citation sg:pub.10.1007/bf00175826
22 sg:pub.10.1007/bf02109483
23 sg:pub.10.1007/pl00006155
24 sg:pub.10.1007/pl00006241
25 sg:pub.10.1007/pl00006538
26 sg:pub.10.1007/pl00006580
27 sg:pub.10.1038/20601
28 sg:pub.10.1038/5052
29 sg:pub.10.1038/90129
30 schema:datePublished 2001-10-23
31 schema:datePublishedReg 2001-10-23
32 schema:description BackgroundThe availability of multiple complete genome sequences from diverse taxa prompts the development of new phylogenetic approaches, which attempt to incorporate information derived from comparative analysis of complete gene sets or large subsets thereof. Such attempts are particularly relevant because of the major role of horizontal gene transfer and lineage-specific gene loss, at least in the evolution of prokaryotes.ResultsFive largely independent approaches were employed to construct trees for completely sequenced bacterial and archaeal genomes: i) presence-absence of genomes in clusters of orthologous genes; ii) conservation of local gene order (gene pairs) among prokaryotic genomes; iii) parameters of identity distribution for probable orthologs; iv) analysis of concatenated alignments of ribosomal proteins; v) comparison of trees constructed for multiple protein families. All constructed trees support the separation of the two primary prokaryotic domains, bacteria and archaea, as well as some terminal bifurcations within the bacterial and archaeal domains. Beyond these obvious groupings, the trees made with different methods appeared to differ substantially in terms of the relative contributions of phylogenetic relationships and similarities in gene repertoires caused by similar life styles and horizontal gene transfer to the tree topology. The trees based on presence-absence of genomes in orthologous clusters and the trees based on conserved gene pairs appear to be strongly affected by gene loss and horizontal gene transfer. The trees based on identity distributions for orthologs and particularly the tree made of concatenated ribosomal protein sequences seemed to carry a stronger phylogenetic signal. The latter tree supported three potential high-level bacterial clades,: i) Chlamydia-Spirochetes, ii) Thermotogales-Aquificales (bacterial hyperthermophiles), and ii) Actinomycetes-Deinococcales-Cyanobacteria. The latter group also appeared to join the low-GC Gram-positive bacteria at a deeper tree node. These new groupings of bacteria were supported by the analysis of alternative topologies in the concatenated ribosomal protein tree using the Kishino-Hasegawa test and by a census of the topologies of 132 individual groups of orthologous proteins. Additionally, the results of this analysis put into question the sister-group relationship between the two major archaeal groups, Euryarchaeota and Crenarchaeota,and suggest instead that Euryarchaeota might be a paraphyletic group with respect to Crenarchaeota.ConclusionsWe conclude that, the extensive horizontal gene flow and lineage-specific gene loss notwithstanding, extension of phylogenetic analysis to the genome scale has the potential of uncovering deep evolutionary relationships between prokaryotic lineages.
33 schema:genre article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N99d0cafa558d4f3e816f7ccf0c5f6efd
37 Nf04d8c1b122b44eda0bf7d76f3432453
38 sg:journal.1024249
39 schema:keywords ConclusionsWe
40 Crenarchaeota
41 Euryarchaeota
42 GC Gram-positive bacteria
43 Gram-positive bacteria
44 Kishino-Hasegawa test
45 ResultsFive
46 alignment
47 alternative topologies
48 analysis
49 approach
50 archaea
51 archaeal domain
52 archaeal genomes
53 archaeal groups
54 attempt
55 availability
56 bacteria
57 bacterial clades
58 bifurcation
59 census
60 clade
61 clusters
62 comparative analysis
63 comparison
64 comparison of trees
65 complete gene sets
66 complete genome sequence
67 conservation
68 contribution
69 cyanobacteria
70 deep evolutionary relationships
71 development
72 different approaches
73 different methods
74 distribution
75 domain
76 evolution
77 evolution of prokaryotes
78 evolutionary relationships
79 extension
80 family
81 flow
82 gene flow
83 gene loss
84 gene order
85 gene pairs
86 gene repertoire
87 gene sets
88 gene transfer
89 genes
90 genome
91 genome scale
92 genome sequence
93 genome trees
94 group
95 grouping
96 horizontal gene flow
97 horizontal gene transfer
98 identity distribution
99 independent approaches
100 individual groups
101 information
102 large subset
103 latter group
104 latter tree
105 life style
106 lineage-specific gene loss
107 lineages
108 local gene order
109 loss
110 major archaeal groups
111 major bacterial clades
112 major role
113 method
114 multiple complete genome sequences
115 multiple protein families
116 new grouping
117 new phylogenetic approach
118 nodes
119 obvious grouping
120 order
121 orthologous clusters
122 orthologous genes
123 orthologous proteins
124 orthologs
125 pairs
126 parameters
127 paraphyletic group
128 phylogenetic analysis
129 phylogenetic approach
130 phylogenetic relationships
131 phylogenetic signal
132 potential
133 probable orthologs
134 prokaryotes
135 prokaryotic domains
136 prokaryotic genomes
137 prokaryotic lineages
138 prompts
139 protein
140 protein family
141 protein sequences
142 protein trees
143 questions
144 relationship
145 relative contribution
146 repertoire
147 respect
148 results
149 ribosomal protein sequences
150 ribosomal proteins
151 role
152 scale
153 separation
154 sequence
155 set
156 signals
157 similar life styles
158 similarity
159 sister-group relationship
160 strong phylogenetic signal
161 style
162 subset
163 such attempts
164 terminal bifurcation
165 terms
166 test
167 topology
168 transfer
169 tree nodes
170 tree topology
171 trees
172 schema:name Genome trees constructed using five different approaches suggest new major bacterial clades
173 schema:pagination 8
174 schema:productId N45b7be64b1f84f92ad2e73c06b36175e
175 N4d5cc7647b0f4305acb4deae10b91a09
176 N7b3a73efb4a74c55b3aa94f27408e633
177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035042918
178 https://doi.org/10.1186/1471-2148-1-8
179 schema:sdDatePublished 2022-05-20T07:21
180 schema:sdLicense https://scigraph.springernature.com/explorer/license/
181 schema:sdPublisher Nb7965b6f0ad744f4b5c58ca33db178f1
182 schema:url https://doi.org/10.1186/1471-2148-1-8
183 sgo:license sg:explorer/license/
184 sgo:sdDataset articles
185 rdf:type schema:ScholarlyArticle
186 N003e65f5db184e86856d5f619701a69f rdf:first sg:person.0761703771.03
187 rdf:rest N82143c1a91cb4a37b31b33ea11e0bc57
188 N1098e5336e0347dfab584210767e545b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Sequence Alignment
190 rdf:type schema:DefinedTerm
191 N183b02df9af1411da3864954a6a70559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Genes, Archaeal
193 rdf:type schema:DefinedTerm
194 N1e98fbeeb09945fa8eeefbc8695a6da3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Genome, Archaeal
196 rdf:type schema:DefinedTerm
197 N395ce12ca51a4947b1fd8b3397ac0c77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Gene Transfer, Horizontal
199 rdf:type schema:DefinedTerm
200 N3c0371433b794fe98689d66467100d0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Species Specificity
202 rdf:type schema:DefinedTerm
203 N40a11fcaa8d34c8a9709b73faa37c92b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Genes, Bacterial
205 rdf:type schema:DefinedTerm
206 N455e36f3ed8c489e8cedff30e26aa1a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Phylogeny
208 rdf:type schema:DefinedTerm
209 N458b8bdd556f4a8fbfa7ad5708ad2f0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Genome, Bacterial
211 rdf:type schema:DefinedTerm
212 N45b7be64b1f84f92ad2e73c06b36175e schema:name doi
213 schema:value 10.1186/1471-2148-1-8
214 rdf:type schema:PropertyValue
215 N4a22ab15a413442bae7de6d40b92439a rdf:first sg:person.0634453251.89
216 rdf:rest N003e65f5db184e86856d5f619701a69f
217 N4b5b81bbe6dc4add9fa6ad1a30ebcbec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Prokaryotic Cells
219 rdf:type schema:DefinedTerm
220 N4d5cc7647b0f4305acb4deae10b91a09 schema:name pubmed_id
221 schema:value 11734060
222 rdf:type schema:PropertyValue
223 N624d0b43cbd64c3580f196670b406487 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Likelihood Functions
225 rdf:type schema:DefinedTerm
226 N7b3a73efb4a74c55b3aa94f27408e633 schema:name dimensions_id
227 schema:value pub.1035042918
228 rdf:type schema:PropertyValue
229 N80d84dee2e534f4e989a176825af11d1 rdf:first sg:person.01017015051.78
230 rdf:rest rdf:nil
231 N82143c1a91cb4a37b31b33ea11e0bc57 rdf:first sg:person.015412226217.60
232 rdf:rest Ne4406e6438154f0e860c6453edf05040
233 N8b3b1b025a22456ab2cac9a5fe98ab83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
234 schema:name Bacteria
235 rdf:type schema:DefinedTerm
236 N985941f12b2b4ba784fbdbe64f8504c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
237 schema:name Conserved Sequence
238 rdf:type schema:DefinedTerm
239 N99d0cafa558d4f3e816f7ccf0c5f6efd schema:issueNumber 1
240 rdf:type schema:PublicationIssue
241 Nb7965b6f0ad744f4b5c58ca33db178f1 schema:name Springer Nature - SN SciGraph project
242 rdf:type schema:Organization
243 Nc2e34e379ea44168b1420ca86f00386a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
244 schema:name Evolution, Molecular
245 rdf:type schema:DefinedTerm
246 Nc3158be0b34e43fb8e4828a1da66f990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
247 schema:name Gene Order
248 rdf:type schema:DefinedTerm
249 Nc57b6660ed9f4e34a338301c2dff270f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
250 schema:name Genomics
251 rdf:type schema:DefinedTerm
252 Ne397fc80cc484980b3540f55ae105bc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
253 schema:name Ribosomal Proteins
254 rdf:type schema:DefinedTerm
255 Ne4406e6438154f0e860c6453edf05040 rdf:first sg:person.01360057351.65
256 rdf:rest N80d84dee2e534f4e989a176825af11d1
257 Nf04d8c1b122b44eda0bf7d76f3432453 schema:volumeNumber 1
258 rdf:type schema:PublicationVolume
259 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
260 schema:name Biological Sciences
261 rdf:type schema:DefinedTerm
262 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
263 schema:name Genetics
264 rdf:type schema:DefinedTerm
265 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
266 schema:name Microbiology
267 rdf:type schema:DefinedTerm
268 sg:journal.1024249 schema:issn 2730-7182
269 schema:name BMC Ecology and Evolution
270 schema:publisher Springer Nature
271 rdf:type schema:Periodical
272 sg:person.01017015051.78 schema:affiliation grid-institutes:grid.419234.9
273 schema:familyName Koonin
274 schema:givenName Eugene V
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78
276 rdf:type schema:Person
277 sg:person.01360057351.65 schema:affiliation grid-institutes:grid.419234.9
278 schema:familyName Tatusov
279 schema:givenName Roman L
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360057351.65
281 rdf:type schema:Person
282 sg:person.015412226217.60 schema:affiliation grid-institutes:grid.267313.2
283 schema:familyName Grishin
284 schema:givenName Nick V
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412226217.60
286 rdf:type schema:Person
287 sg:person.0634453251.89 schema:affiliation grid-institutes:grid.419234.9
288 schema:familyName Wolf
289 schema:givenName Yuri I
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634453251.89
291 rdf:type schema:Person
292 sg:person.0761703771.03 schema:affiliation grid-institutes:grid.419234.9
293 schema:familyName Rogozin
294 schema:givenName Igor B
295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761703771.03
296 rdf:type schema:Person
297 sg:pub.10.1007/bf00175826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049478746
298 https://doi.org/10.1007/bf00175826
299 rdf:type schema:CreativeWork
300 sg:pub.10.1007/bf02109483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019697953
301 https://doi.org/10.1007/bf02109483
302 rdf:type schema:CreativeWork
303 sg:pub.10.1007/pl00006155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022607788
304 https://doi.org/10.1007/pl00006155
305 rdf:type schema:CreativeWork
306 sg:pub.10.1007/pl00006241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002335077
307 https://doi.org/10.1007/pl00006241
308 rdf:type schema:CreativeWork
309 sg:pub.10.1007/pl00006538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052228363
310 https://doi.org/10.1007/pl00006538
311 rdf:type schema:CreativeWork
312 sg:pub.10.1007/pl00006580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047724218
313 https://doi.org/10.1007/pl00006580
314 rdf:type schema:CreativeWork
315 sg:pub.10.1038/20601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050152586
316 https://doi.org/10.1038/20601
317 rdf:type schema:CreativeWork
318 sg:pub.10.1038/5052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038696050
319 https://doi.org/10.1038/5052
320 rdf:type schema:CreativeWork
321 sg:pub.10.1038/90129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537539
322 https://doi.org/10.1038/90129
323 rdf:type schema:CreativeWork
324 grid-institutes:grid.267313.2 schema:alternateName Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, 75390-9050, Dallas, TX, USA
325 schema:name Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, 75390-9050, Dallas, TX, USA
326 rdf:type schema:Organization
327 grid-institutes:grid.419234.9 schema:alternateName National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA
328 schema:name National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA
329 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...