ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Todd H Stokes, JT Torrance, Henry Li, May D Wang

ABSTRACT

BACKGROUND: A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. RESULTS: To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents) such as Google to further enhance data discovery. CONCLUSIONS: Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at http://www.bio-miblab.org/arraywiki. More... »

PAGES

s18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s18

DOI

http://dx.doi.org/10.1186/1471-2105-9-s6-s18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023895635

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18541053


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Database Management Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Information Dissemination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Meta-Analysis as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Department of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Building, 777 Atlantic Drive NW, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stokes", 
        "givenName": "Todd H", 
        "id": "sg:person.01051744744.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051744744.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Biomedical Engineering, Georgia Institute of Technology and Emory University, Whitaker Building, 313 Ferst Drive, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torrance", 
        "givenName": "JT", 
        "id": "sg:person.010202224607.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010202224607.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Biomedical Engineering, Georgia Institute of Technology and Emory University, Whitaker Building, 313 Ferst Drive, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Henry", 
        "id": "sg:person.01161153371.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161153371.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Department of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Building, 777 Atlantic Drive NW, 30332, Atlanta, GA, USA", 
            "Biomedical Engineering, Georgia Institute of Technology and Emory University, Whitaker Building, 313 Ferst Drive, 30332, Atlanta, GA, USA", 
            "Hematology and Oncology, Winship Cancer Institute, Emory University, 1365C Clifton Road, 30322, Atlanta, GA, USA", 
            "Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "May D", 
        "id": "sg:person.015667052440.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667052440.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1593/neo.07112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001776780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1525-1578(10)60547-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004415860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/441678a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004647191", 
          "https://doi.org/10.1038/441678a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/441678a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004647191", 
          "https://doi.org/10.1038/441678a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/441678a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004647191", 
          "https://doi.org/10.1038/441678a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m2522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007694158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(05)03647-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009326864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pap.0b013e3181594720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010546368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pap.0b013e3181594720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010546368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pap.0b013e3181594720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010546368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012344009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837556", 
          "https://doi.org/10.1038/4434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837556", 
          "https://doi.org/10.1038/4434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013321903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11893011_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017484627", 
          "https://doi.org/10.1007/11893011_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11893011_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017484627", 
          "https://doi.org/10.1007/11893011_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1476-5586(04)80047-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019351767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019442191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021178486", 
          "https://doi.org/10.1186/1471-2105-7-137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021178486", 
          "https://doi.org/10.1186/1471-2105-7-137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024241091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-1-102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026717987", 
          "https://doi.org/10.1186/gb-2007-8-1-102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-007-9313-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031989338", 
          "https://doi.org/10.1007/s10439-007-9313-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-007-9313-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031989338", 
          "https://doi.org/10.1007/s10439-007-9313-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/445691a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032804817", 
          "https://doi.org/10.1038/445691a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033237811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035901433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037837492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(05)03501-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038113615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053552", 
          "https://doi.org/10.1038/nmeth756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053552", 
          "https://doi.org/10.1038/nmeth756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1083-6101.2006.00316.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039665324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045019897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046325942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046925392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047902634", 
          "https://doi.org/10.1038/ng1561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047902634", 
          "https://doi.org/10.1038/ng1561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047902634", 
          "https://doi.org/10.1038/ng1561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.39062.555405.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050905950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-6-r112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051172006", 
          "https://doi.org/10.1186/gb-2007-8-6-r112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053065828", 
          "https://doi.org/10.1038/nbt1241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053065828", 
          "https://doi.org/10.1038/nbt1241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053642900", 
          "https://doi.org/10.1186/1471-2105-7-395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0603350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0603350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mic.2007.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061403685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/156652407779940431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069185827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lssa.2007.4400918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094948250"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the \"curse-of-dimension\" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create \"intelligent\" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources.\nRESULTS: To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents) such as Google to further enhance data discovery.\nCONCLUSIONS: Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at http://www.bio-miblab.org/arraywiki.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-s6-s18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699036", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2477481", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses", 
    "pagination": "s18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "71d75c2d180e333b7f808f5c1ec03037aef2ee4f048e338484710d0be0912fb8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18541053"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-s6-s18"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023895635"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-s6-s18", 
      "https://app.dimensions.ai/details/publication/pub.1023895635"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-9-S6-S18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s18'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      75 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-s6-s18 schema:about N35a22aaab93a4ec4a9a70168ec29b8f1
2 N39d2e1a7793345618dfcd19ccea70fab
3 N40e6f1c8623c40e49579d4deaafc7f42
4 N5d5babf3588643c5b3ede4cbcab95cda
5 N6365bcd5c3d7473095f1696fe3c27788
6 N654f8b9be6f1440681c755f8562b3778
7 Nd3a2cd6585ca48bd8b98c1c8c4b27ba2
8 Nf136e4d1206443718176b6087924aedf
9 anzsrc-for:08
10 anzsrc-for:0806
11 schema:author N27e7493510874aaf95bf146dd4a09b04
12 schema:citation sg:pub.10.1007/11893011_74
13 sg:pub.10.1007/s10439-007-9313-y
14 sg:pub.10.1038/441678a
15 sg:pub.10.1038/4434
16 sg:pub.10.1038/445691a
17 sg:pub.10.1038/nbt1239
18 sg:pub.10.1038/nbt1241
19 sg:pub.10.1038/ng1031
20 sg:pub.10.1038/ng1561
21 sg:pub.10.1038/nmeth756
22 sg:pub.10.1186/1471-2105-7-137
23 sg:pub.10.1186/1471-2105-7-395
24 sg:pub.10.1186/gb-2004-5-10-r80
25 sg:pub.10.1186/gb-2007-8-1-102
26 sg:pub.10.1186/gb-2007-8-6-r112
27 https://doi.org/10.1016/s1359-6446(05)03501-4
28 https://doi.org/10.1016/s1359-6446(05)03647-0
29 https://doi.org/10.1016/s1476-5586(04)80047-2
30 https://doi.org/10.1016/s1525-1578(10)60547-8
31 https://doi.org/10.1021/nl0603350
32 https://doi.org/10.1093/bioinformatics/btg015
33 https://doi.org/10.1093/bioinformatics/bti718
34 https://doi.org/10.1093/bioinformatics/btl005
35 https://doi.org/10.1093/bioinformatics/btm229
36 https://doi.org/10.1093/nar/gki006
37 https://doi.org/10.1093/nar/gki022
38 https://doi.org/10.1093/nar/gki056
39 https://doi.org/10.1093/nar/gki123
40 https://doi.org/10.1093/nar/gkl881
41 https://doi.org/10.1097/pap.0b013e3181594720
42 https://doi.org/10.1109/lssa.2007.4400918
43 https://doi.org/10.1109/mic.2007.110
44 https://doi.org/10.1111/j.1083-6101.2006.00316.x
45 https://doi.org/10.1126/science.1132939
46 https://doi.org/10.1136/bmj.39062.555405.80
47 https://doi.org/10.1197/jamia.m2522
48 https://doi.org/10.1593/neo.07112
49 https://doi.org/10.2174/156652407779940431
50 schema:datePublished 2008-12
51 schema:datePublishedReg 2008-12-01
52 schema:description BACKGROUND: A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. RESULTS: To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents) such as Google to further enhance data discovery. CONCLUSIONS: Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at http://www.bio-miblab.org/arraywiki.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf Nd35e1282ce6e4ca1befcb163b1591a54
57 Ne7cd030f991d41ec892dc3d84904656d
58 sg:journal.1023786
59 schema:name ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses
60 schema:pagination s18
61 schema:productId N4509a9e0c7fa40b8845177fdca492833
62 N526433a246f74cb297a9d64f66ff7be9
63 N65bff98dd23540c9a24e821e09840cde
64 N8c25712ac4aa47189beb417c584d9ed7
65 N917945b250c848b9bcdb580dd7cb2b5c
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023895635
67 https://doi.org/10.1186/1471-2105-9-s6-s18
68 schema:sdDatePublished 2019-04-11T00:14
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nf0d5049cc6d84258aefda81ea106bfc3
71 schema:url http://link.springer.com/10.1186%2F1471-2105-9-S6-S18
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N27e7493510874aaf95bf146dd4a09b04 rdf:first sg:person.01051744744.97
76 rdf:rest Nfabea69d257a49c28937a084753633a2
77 N35a22aaab93a4ec4a9a70168ec29b8f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Database Management Systems
79 rdf:type schema:DefinedTerm
80 N39d2e1a7793345618dfcd19ccea70fab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Biotechnology
82 rdf:type schema:DefinedTerm
83 N39db170beb454b7cb6da5f2ed88a2b5a rdf:first sg:person.015667052440.21
84 rdf:rest rdf:nil
85 N40e6f1c8623c40e49579d4deaafc7f42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Information Dissemination
87 rdf:type schema:DefinedTerm
88 N4509a9e0c7fa40b8845177fdca492833 schema:name dimensions_id
89 schema:value pub.1023895635
90 rdf:type schema:PropertyValue
91 N526433a246f74cb297a9d64f66ff7be9 schema:name pubmed_id
92 schema:value 18541053
93 rdf:type schema:PropertyValue
94 N54bbea95540b44bbb5575f6d131d2520 rdf:first sg:person.01161153371.65
95 rdf:rest N39db170beb454b7cb6da5f2ed88a2b5a
96 N5d5babf3588643c5b3ede4cbcab95cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Artificial Intelligence
98 rdf:type schema:DefinedTerm
99 N6365bcd5c3d7473095f1696fe3c27788 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Internet
101 rdf:type schema:DefinedTerm
102 N654f8b9be6f1440681c755f8562b3778 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Meta-Analysis as Topic
104 rdf:type schema:DefinedTerm
105 N65bff98dd23540c9a24e821e09840cde schema:name nlm_unique_id
106 schema:value 100965194
107 rdf:type schema:PropertyValue
108 N8c25712ac4aa47189beb417c584d9ed7 schema:name doi
109 schema:value 10.1186/1471-2105-9-s6-s18
110 rdf:type schema:PropertyValue
111 N917945b250c848b9bcdb580dd7cb2b5c schema:name readcube_id
112 schema:value 71d75c2d180e333b7f808f5c1ec03037aef2ee4f048e338484710d0be0912fb8
113 rdf:type schema:PropertyValue
114 Nd35e1282ce6e4ca1befcb163b1591a54 schema:volumeNumber 9
115 rdf:type schema:PublicationVolume
116 Nd3a2cd6585ca48bd8b98c1c8c4b27ba2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Oligonucleotide Array Sequence Analysis
118 rdf:type schema:DefinedTerm
119 Ne7cd030f991d41ec892dc3d84904656d schema:issueNumber Suppl 6
120 rdf:type schema:PublicationIssue
121 Nf0d5049cc6d84258aefda81ea106bfc3 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nf136e4d1206443718176b6087924aedf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Databases, Genetic
125 rdf:type schema:DefinedTerm
126 Nfabea69d257a49c28937a084753633a2 rdf:first sg:person.010202224607.90
127 rdf:rest N54bbea95540b44bbb5575f6d131d2520
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
132 schema:name Information Systems
133 rdf:type schema:DefinedTerm
134 sg:grant.2477481 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-s6-s18
135 rdf:type schema:MonetaryGrant
136 sg:grant.2699036 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-s6-s18
137 rdf:type schema:MonetaryGrant
138 sg:journal.1023786 schema:issn 1471-2105
139 schema:name BMC Bioinformatics
140 rdf:type schema:Periodical
141 sg:person.010202224607.90 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
142 schema:familyName Torrance
143 schema:givenName JT
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010202224607.90
145 rdf:type schema:Person
146 sg:person.01051744744.97 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
147 schema:familyName Stokes
148 schema:givenName Todd H
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051744744.97
150 rdf:type schema:Person
151 sg:person.01161153371.65 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
152 schema:familyName Li
153 schema:givenName Henry
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161153371.65
155 rdf:type schema:Person
156 sg:person.015667052440.21 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
157 schema:familyName Wang
158 schema:givenName May D
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667052440.21
160 rdf:type schema:Person
161 sg:pub.10.1007/11893011_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017484627
162 https://doi.org/10.1007/11893011_74
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s10439-007-9313-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031989338
165 https://doi.org/10.1007/s10439-007-9313-y
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/441678a schema:sameAs https://app.dimensions.ai/details/publication/pub.1004647191
168 https://doi.org/10.1038/441678a
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/4434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837556
171 https://doi.org/10.1038/4434
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/445691a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032804817
174 https://doi.org/10.1038/445691a
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nbt1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875102
177 https://doi.org/10.1038/nbt1239
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nbt1241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053065828
180 https://doi.org/10.1038/nbt1241
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ng1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021837407
183 https://doi.org/10.1038/ng1031
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ng1561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047902634
186 https://doi.org/10.1038/ng1561
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nmeth756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053552
189 https://doi.org/10.1038/nmeth756
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2105-7-137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021178486
192 https://doi.org/10.1186/1471-2105-7-137
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-7-395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053642900
195 https://doi.org/10.1186/1471-2105-7-395
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
198 https://doi.org/10.1186/gb-2004-5-10-r80
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/gb-2007-8-1-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026717987
201 https://doi.org/10.1186/gb-2007-8-1-102
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/gb-2007-8-6-r112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051172006
204 https://doi.org/10.1186/gb-2007-8-6-r112
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s1359-6446(05)03501-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038113615
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s1359-6446(05)03647-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009326864
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s1476-5586(04)80047-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019351767
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s1525-1578(10)60547-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004415860
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/nl0603350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216657
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/btg015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037837492
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/bti718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046325942
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/bioinformatics/btl005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046925392
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/bioinformatics/btm229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035901433
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gki006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012344009
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gki022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237811
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/nar/gki056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024241091
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/nar/gki123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045019897
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/nar/gkl881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019442191
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1097/pap.0b013e3181594720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010546368
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/lssa.2007.4400918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094948250
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/mic.2007.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061403685
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1111/j.1083-6101.2006.00316.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039665324
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1132939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013321903
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1136/bmj.39062.555405.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050905950
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1197/jamia.m2522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007694158
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1593/neo.07112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001776780
249 rdf:type schema:CreativeWork
250 https://doi.org/10.2174/156652407779940431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069185827
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.189967.8 schema:alternateName Emory University
253 schema:name Biomedical Engineering, Georgia Institute of Technology and Emory University, Whitaker Building, 313 Ferst Drive, 30332, Atlanta, GA, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
256 schema:name Biomedical Engineering, Georgia Institute of Technology and Emory University, Whitaker Building, 313 Ferst Drive, 30332, Atlanta, GA, USA
257 Department of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Building, 777 Atlantic Drive NW, 30332, Atlanta, GA, USA
258 Hematology and Oncology, Winship Cancer Institute, Emory University, 1365C Clifton Road, 30322, Atlanta, GA, USA
259 Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, 30332, Atlanta, GA, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...