Drug interaction prediction using ontology-driven hypothetical assertion framework for pathway generation followed by numerical simulation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Takeshi Arikuma, Sumi Yoshikawa, Ryuzo Azuma, Kentaro Watanabe, Kazumi Matsumura, Akihiko Konagaya

ABSTRACT

BACKGROUND: In accordance with the increasing amount of information concerning individual differences in drug response and molecular interaction, the role of in silico prediction of drug interaction on the pathway level is becoming more and more important. However, in view of the interferences for the identification of new drug interactions, most conventional information models of a biological pathway would have limitations. As a reflection of real world biological events triggered by a stimulus, it is important to facilitate the incorporation of known molecular events for inferring (unknown) possible pathways and hypothetic drug interactions. Here, we propose a new Ontology-Driven Hypothetic Assertion (OHA) framework including pathway generation, drug interaction detection, simulation model generation, numerical simulation, and hypothetic assertion. Potential drug interactions are detected from drug metabolic pathways dynamically generated by molecular events triggered after the administration of certain drugs. Numerical simulation enables to estimate the degree of side effects caused by the predicted drug interactions. New hypothetic assertions of the potential drug interactions and simulation are deduced from the Drug Interaction Ontology (DIO) written in Web Ontology Language (OWL). RESULTS: The concept of the Ontology-Driven Hypothetic Assertion (OHA) framework was demonstrated with known interactions between irinotecan (CPT-11) and ketoconazole. Four drug interactions that involved cytochrome p450 (CYP3A4) and albumin as potential drug interaction proteins were automatically detected from Drug Interaction Ontology (DIO). The effect of the two interactions involving CYP3A4 were quantitatively evaluated with numerical simulation. The co-administration of ketoconazole may increase AUC and Cmax of SN-38(active metabolite of irinotecan) to 108% and 105%, respectively. We also estimates the potential effects of genetic variations: the AUC and Cmax of SN-38 may increase to 208% and 165% respectively with the genetic variation UGT1A1*28/*28 which reduces the expression of UGT1A1 down to 30%. CONCLUSION: These results demonstrate that the Ontology-Driven Hypothetic Assertion framework is a promising approach for in silico prediction of drug interactions. The following future researches for the in silico prediction of individual differences in the response to the drug and drug interactions after the administration of multiple drugs: expansion of the Drug Interaction Ontology for other drugs, and incorporation of virtual population model for genetic variation analysis, as well as refinement of the pathway generation rules, the drug interaction detection rules, and the numerical simulation models. More... »

PAGES

s11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s11

DOI

http://dx.doi.org/10.1186/1471-2105-9-s6-s11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041272526

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18541046


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmaceutical Preparations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arikuma", 
        "givenName": "Takeshi", 
        "id": "sg:person.016243562200.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243562200.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Genomic Sciences Center, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshikawa", 
        "givenName": "Sumi", 
        "id": "sg:person.01163652424.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163652424.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Genomic Sciences Center, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azuma", 
        "givenName": "Ryuzo", 
        "id": "sg:person.014073366127.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073366127.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kentaro", 
        "id": "sg:person.01035222571.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035222571.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Genomic Sciences Center, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumura", 
        "givenName": "Kazumi", 
        "id": "sg:person.01103335771.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103335771.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro, Tokyo, Japan", 
            "Genomic Sciences Center, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konagaya", 
        "givenName": "Akihiko", 
        "id": "sg:person.0712025716.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712025716.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1742-4682-4-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002107294", 
          "https://doi.org/10.1186/1742-4682-4-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.6-6-506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004965279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011815659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003495-198223010-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014783224", 
          "https://doi.org/10.2165/00003495-198223010-00001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-5-r46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015285227", 
          "https://doi.org/10.1186/gb-2005-6-5-r46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00354-007-0027-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017888504", 
          "https://doi.org/10.1007/s00354-007-0027-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00354-007-0027-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017888504", 
          "https://doi.org/10.1007/s00354-007-0027-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.clpt.2004.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018639416", 
          "https://doi.org/10.1016/j.clpt.2004.01.010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.62.3.608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020422216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0731-7085(94)00093-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023350139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-007-9053-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024057368", 
          "https://doi.org/10.1007/s10928-007-9053-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010939329562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024243888", 
          "https://doi.org/10.1023/a:1010939329562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15427633scc0401_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024783452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0300-483x(96)03560-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031512122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-198814010-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032326903", 
          "https://doi.org/10.2165/00003088-198814010-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03040955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033800485", 
          "https://doi.org/10.1007/bf03040955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03040955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033800485", 
          "https://doi.org/10.1007/bf03040955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.105.008730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034789922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006379730137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037043392", 
          "https://doi.org/10.1023/a:1006379730137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.104.001909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038525089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35074206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038956536", 
          "https://doi.org/10.1038/35074206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35074206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038956536", 
          "https://doi.org/10.1038/35074206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-s5-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039913340", 
          "https://doi.org/10.1186/1471-2105-7-s5-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-39967-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040218377", 
          "https://doi.org/10.1007/3-540-39967-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-39967-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040218377", 
          "https://doi.org/10.1007/3-540-39967-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.websem.2006.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042483074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042802800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.62.3.446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043667982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2003.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048891904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2002.08.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074496939", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074607295", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074750447", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074859792", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075014918", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076890772", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077044115", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083155976", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083208907", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083303715", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083344084", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/imsccs.2007.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094165144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccgrid.2006.1630930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094254531"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: In accordance with the increasing amount of information concerning individual differences in drug response and molecular interaction, the role of in silico prediction of drug interaction on the pathway level is becoming more and more important. However, in view of the interferences for the identification of new drug interactions, most conventional information models of a biological pathway would have limitations. As a reflection of real world biological events triggered by a stimulus, it is important to facilitate the incorporation of known molecular events for inferring (unknown) possible pathways and hypothetic drug interactions. Here, we propose a new Ontology-Driven Hypothetic Assertion (OHA) framework including pathway generation, drug interaction detection, simulation model generation, numerical simulation, and hypothetic assertion. Potential drug interactions are detected from drug metabolic pathways dynamically generated by molecular events triggered after the administration of certain drugs. Numerical simulation enables to estimate the degree of side effects caused by the predicted drug interactions. New hypothetic assertions of the potential drug interactions and simulation are deduced from the Drug Interaction Ontology (DIO) written in Web Ontology Language (OWL).\nRESULTS: The concept of the Ontology-Driven Hypothetic Assertion (OHA) framework was demonstrated with known interactions between irinotecan (CPT-11) and ketoconazole. Four drug interactions that involved cytochrome p450 (CYP3A4) and albumin as potential drug interaction proteins were automatically detected from Drug Interaction Ontology (DIO). The effect of the two interactions involving CYP3A4 were quantitatively evaluated with numerical simulation. The co-administration of ketoconazole may increase AUC and Cmax of SN-38(active metabolite of irinotecan) to 108% and 105%, respectively. We also estimates the potential effects of genetic variations: the AUC and Cmax of SN-38 may increase to 208% and 165% respectively with the genetic variation UGT1A1*28/*28 which reduces the expression of UGT1A1 down to 30%.\nCONCLUSION: These results demonstrate that the Ontology-Driven Hypothetic Assertion framework is a promising approach for in silico prediction of drug interactions. The following future researches for the in silico prediction of individual differences in the response to the drug and drug interactions after the administration of multiple drugs: expansion of the Drug Interaction Ontology for other drugs, and incorporation of virtual population model for genetic variation analysis, as well as refinement of the pathway generation rules, the drug interaction detection rules, and the numerical simulation models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-s6-s11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Drug interaction prediction using ontology-driven hypothetical assertion framework for pathway generation followed by numerical simulation", 
    "pagination": "s11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c49be7174be2c07aa1f7461a2ae3463ac9f65ff696479708055c9c8c0307ff00"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18541046"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-s6-s11"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041272526"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-s6-s11", 
      "https://app.dimensions.ai/details/publication/pub.1041272526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-9-S6-S11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s6-s11'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      78 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-s6-s11 schema:about N1ed0c63bd7f14cb5a3e9f15ddf7e7152
2 N22c73e97afe94e04b5dfc71650596552
3 N59c4402404fb4821951adccd44ca1aae
4 N69e1fc2634e045c9897a3c824c8f3eba
5 N72fca8442354479cb535da0e25f679a0
6 Na2422474c904491688725497ef78b0e6
7 Na44aeee50e1e4637bad8124dddb2f194
8 Nb441769c03f8418aaafe253c32036aa8
9 Ncbd05ce75be34c32a778620d339f836e
10 anzsrc-for:11
11 anzsrc-for:1115
12 schema:author Nf7ce3cad0af04452bf150211f2ccc854
13 schema:citation sg:pub.10.1007/3-540-39967-4_2
14 sg:pub.10.1007/bf03040955
15 sg:pub.10.1007/s00354-007-0027-3
16 sg:pub.10.1007/s10928-007-9053-5
17 sg:pub.10.1016/j.clpt.2004.01.010
18 sg:pub.10.1023/a:1006379730137
19 sg:pub.10.1023/a:1010939329562
20 sg:pub.10.1038/35074206
21 sg:pub.10.1186/1471-2105-7-s5-s10
22 sg:pub.10.1186/1742-4682-4-13
23 sg:pub.10.1186/gb-2005-6-5-r46
24 sg:pub.10.2165/00003088-198814010-00002
25 sg:pub.10.2165/00003495-198223010-00001
26 https://app.dimensions.ai/details/publication/pub.1074496939
27 https://app.dimensions.ai/details/publication/pub.1074607295
28 https://app.dimensions.ai/details/publication/pub.1074750447
29 https://app.dimensions.ai/details/publication/pub.1074859792
30 https://app.dimensions.ai/details/publication/pub.1075014918
31 https://app.dimensions.ai/details/publication/pub.1076890772
32 https://app.dimensions.ai/details/publication/pub.1077044115
33 https://app.dimensions.ai/details/publication/pub.1083155976
34 https://app.dimensions.ai/details/publication/pub.1083208907
35 https://app.dimensions.ai/details/publication/pub.1083303715
36 https://app.dimensions.ai/details/publication/pub.1083344084
37 https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n
38 https://doi.org/10.1016/0731-7085(94)00093-x
39 https://doi.org/10.1016/j.jbi.2003.11.007
40 https://doi.org/10.1016/j.websem.2006.05.007
41 https://doi.org/10.1016/s0300-483x(96)03560-3
42 https://doi.org/10.1093/nar/28.1.27
43 https://doi.org/10.1093/nar/gkh061
44 https://doi.org/10.1109/ccgrid.2006.1630930
45 https://doi.org/10.1109/imsccs.2007.72
46 https://doi.org/10.1124/dmd.104.001909
47 https://doi.org/10.1124/dmd.105.008730
48 https://doi.org/10.1124/mol.62.3.446
49 https://doi.org/10.1124/mol.62.3.608
50 https://doi.org/10.1200/jco.2002.08.177
51 https://doi.org/10.1207/s15427633scc0401_5
52 https://doi.org/10.1634/theoncologist.6-6-506
53 schema:datePublished 2008-12
54 schema:datePublishedReg 2008-12-01
55 schema:description BACKGROUND: In accordance with the increasing amount of information concerning individual differences in drug response and molecular interaction, the role of in silico prediction of drug interaction on the pathway level is becoming more and more important. However, in view of the interferences for the identification of new drug interactions, most conventional information models of a biological pathway would have limitations. As a reflection of real world biological events triggered by a stimulus, it is important to facilitate the incorporation of known molecular events for inferring (unknown) possible pathways and hypothetic drug interactions. Here, we propose a new Ontology-Driven Hypothetic Assertion (OHA) framework including pathway generation, drug interaction detection, simulation model generation, numerical simulation, and hypothetic assertion. Potential drug interactions are detected from drug metabolic pathways dynamically generated by molecular events triggered after the administration of certain drugs. Numerical simulation enables to estimate the degree of side effects caused by the predicted drug interactions. New hypothetic assertions of the potential drug interactions and simulation are deduced from the Drug Interaction Ontology (DIO) written in Web Ontology Language (OWL). RESULTS: The concept of the Ontology-Driven Hypothetic Assertion (OHA) framework was demonstrated with known interactions between irinotecan (CPT-11) and ketoconazole. Four drug interactions that involved cytochrome p450 (CYP3A4) and albumin as potential drug interaction proteins were automatically detected from Drug Interaction Ontology (DIO). The effect of the two interactions involving CYP3A4 were quantitatively evaluated with numerical simulation. The co-administration of ketoconazole may increase AUC and Cmax of SN-38(active metabolite of irinotecan) to 108% and 105%, respectively. We also estimates the potential effects of genetic variations: the AUC and Cmax of SN-38 may increase to 208% and 165% respectively with the genetic variation UGT1A1*28/*28 which reduces the expression of UGT1A1 down to 30%. CONCLUSION: These results demonstrate that the Ontology-Driven Hypothetic Assertion framework is a promising approach for in silico prediction of drug interactions. The following future researches for the in silico prediction of individual differences in the response to the drug and drug interactions after the administration of multiple drugs: expansion of the Drug Interaction Ontology for other drugs, and incorporation of virtual population model for genetic variation analysis, as well as refinement of the pathway generation rules, the drug interaction detection rules, and the numerical simulation models.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N1acb52481af54c6487ccd65a154a4f61
60 N95f99d4b972943079a2c462115e49ad0
61 sg:journal.1023786
62 schema:name Drug interaction prediction using ontology-driven hypothetical assertion framework for pathway generation followed by numerical simulation
63 schema:pagination s11
64 schema:productId N444f8da9ec2b4c57bc024b1e80c31b20
65 N591a5662113c400184582e52bbb6dc12
66 Naa6f0b957ac345d581b942e683d540a4
67 Nca7d7da943cb49f488b21dd63703ffac
68 Nd8328bb251bc441495dd54a835d29b76
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041272526
70 https://doi.org/10.1186/1471-2105-9-s6-s11
71 schema:sdDatePublished 2019-04-11T01:14
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N6af481e8ac16410c874c109beff8693b
74 schema:url http://link.springer.com/10.1186%2F1471-2105-9-S6-S11
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N04f6858baad24e2b8872489160745532 rdf:first sg:person.01163652424.55
79 rdf:rest Ne967806e337e4ac89307f9762c69c7f7
80 N1acb52481af54c6487ccd65a154a4f61 schema:volumeNumber 9
81 rdf:type schema:PublicationVolume
82 N1ed0c63bd7f14cb5a3e9f15ddf7e7152 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Protein Binding
84 rdf:type schema:DefinedTerm
85 N22c73e97afe94e04b5dfc71650596552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Proteome
87 rdf:type schema:DefinedTerm
88 N444f8da9ec2b4c57bc024b1e80c31b20 schema:name dimensions_id
89 schema:value pub.1041272526
90 rdf:type schema:PropertyValue
91 N591a5662113c400184582e52bbb6dc12 schema:name readcube_id
92 schema:value c49be7174be2c07aa1f7461a2ae3463ac9f65ff696479708055c9c8c0307ff00
93 rdf:type schema:PropertyValue
94 N59c4402404fb4821951adccd44ca1aae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Signal Transduction
96 rdf:type schema:DefinedTerm
97 N65f52244e65e4e68b83289d63de7a4d9 rdf:first sg:person.01103335771.54
98 rdf:rest Nf25ee646fe314f78988fb6dddb59f9c3
99 N69e1fc2634e045c9897a3c824c8f3eba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Computer Simulation
101 rdf:type schema:DefinedTerm
102 N6af481e8ac16410c874c109beff8693b schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N72fca8442354479cb535da0e25f679a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Biological
106 rdf:type schema:DefinedTerm
107 N8a8742cbec3d4f7590ddbc9399361d87 rdf:first sg:person.01035222571.28
108 rdf:rest N65f52244e65e4e68b83289d63de7a4d9
109 N95f99d4b972943079a2c462115e49ad0 schema:issueNumber Suppl 6
110 rdf:type schema:PublicationIssue
111 Na2422474c904491688725497ef78b0e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Pharmaceutical Preparations
113 rdf:type schema:DefinedTerm
114 Na44aeee50e1e4637bad8124dddb2f194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Algorithms
116 rdf:type schema:DefinedTerm
117 Naa6f0b957ac345d581b942e683d540a4 schema:name doi
118 schema:value 10.1186/1471-2105-9-s6-s11
119 rdf:type schema:PropertyValue
120 Nb441769c03f8418aaafe253c32036aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Binding Sites
122 rdf:type schema:DefinedTerm
123 Nca7d7da943cb49f488b21dd63703ffac schema:name nlm_unique_id
124 schema:value 100965194
125 rdf:type schema:PropertyValue
126 Ncbd05ce75be34c32a778620d339f836e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Protein Interaction Mapping
128 rdf:type schema:DefinedTerm
129 Nd8328bb251bc441495dd54a835d29b76 schema:name pubmed_id
130 schema:value 18541046
131 rdf:type schema:PropertyValue
132 Ne967806e337e4ac89307f9762c69c7f7 rdf:first sg:person.014073366127.34
133 rdf:rest N8a8742cbec3d4f7590ddbc9399361d87
134 Nf25ee646fe314f78988fb6dddb59f9c3 rdf:first sg:person.0712025716.73
135 rdf:rest rdf:nil
136 Nf7ce3cad0af04452bf150211f2ccc854 rdf:first sg:person.016243562200.32
137 rdf:rest N04f6858baad24e2b8872489160745532
138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
139 schema:name Medical and Health Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
142 schema:name Pharmacology and Pharmaceutical Sciences
143 rdf:type schema:DefinedTerm
144 sg:journal.1023786 schema:issn 1471-2105
145 schema:name BMC Bioinformatics
146 rdf:type schema:Periodical
147 sg:person.01035222571.28 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
148 schema:familyName Watanabe
149 schema:givenName Kentaro
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035222571.28
151 rdf:type schema:Person
152 sg:person.01103335771.54 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
153 schema:familyName Matsumura
154 schema:givenName Kazumi
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103335771.54
156 rdf:type schema:Person
157 sg:person.01163652424.55 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
158 schema:familyName Yoshikawa
159 schema:givenName Sumi
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163652424.55
161 rdf:type schema:Person
162 sg:person.014073366127.34 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
163 schema:familyName Azuma
164 schema:givenName Ryuzo
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073366127.34
166 rdf:type schema:Person
167 sg:person.016243562200.32 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
168 schema:familyName Arikuma
169 schema:givenName Takeshi
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243562200.32
171 rdf:type schema:Person
172 sg:person.0712025716.73 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
173 schema:familyName Konagaya
174 schema:givenName Akihiko
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712025716.73
176 rdf:type schema:Person
177 sg:pub.10.1007/3-540-39967-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040218377
178 https://doi.org/10.1007/3-540-39967-4_2
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/bf03040955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033800485
181 https://doi.org/10.1007/bf03040955
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00354-007-0027-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017888504
184 https://doi.org/10.1007/s00354-007-0027-3
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s10928-007-9053-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024057368
187 https://doi.org/10.1007/s10928-007-9053-5
188 rdf:type schema:CreativeWork
189 sg:pub.10.1016/j.clpt.2004.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018639416
190 https://doi.org/10.1016/j.clpt.2004.01.010
191 rdf:type schema:CreativeWork
192 sg:pub.10.1023/a:1006379730137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037043392
193 https://doi.org/10.1023/a:1006379730137
194 rdf:type schema:CreativeWork
195 sg:pub.10.1023/a:1010939329562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024243888
196 https://doi.org/10.1023/a:1010939329562
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/35074206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038956536
199 https://doi.org/10.1038/35074206
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1471-2105-7-s5-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039913340
202 https://doi.org/10.1186/1471-2105-7-s5-s10
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/1742-4682-4-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002107294
205 https://doi.org/10.1186/1742-4682-4-13
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/gb-2005-6-5-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015285227
208 https://doi.org/10.1186/gb-2005-6-5-r46
209 rdf:type schema:CreativeWork
210 sg:pub.10.2165/00003088-198814010-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032326903
211 https://doi.org/10.2165/00003088-198814010-00002
212 rdf:type schema:CreativeWork
213 sg:pub.10.2165/00003495-198223010-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014783224
214 https://doi.org/10.2165/00003495-198223010-00001
215 rdf:type schema:CreativeWork
216 https://app.dimensions.ai/details/publication/pub.1074496939 schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1074607295 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1074750447 schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1074859792 schema:CreativeWork
220 https://app.dimensions.ai/details/publication/pub.1075014918 schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1076890772 schema:CreativeWork
222 https://app.dimensions.ai/details/publication/pub.1077044115 schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1083155976 schema:CreativeWork
224 https://app.dimensions.ai/details/publication/pub.1083208907 schema:CreativeWork
225 https://app.dimensions.ai/details/publication/pub.1083303715 schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1083344084 schema:CreativeWork
227 https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1011815659
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/0731-7085(94)00093-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023350139
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.jbi.2003.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048891904
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.websem.2006.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042483074
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0300-483x(96)03560-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031512122
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/gkh061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042802800
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/ccgrid.2006.1630930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094254531
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/imsccs.2007.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094165144
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1124/dmd.104.001909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038525089
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1124/dmd.105.008730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034789922
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1124/mol.62.3.446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043667982
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1124/mol.62.3.608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020422216
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1200/jco.2002.08.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203106
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1207/s15427633scc0401_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024783452
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1634/theoncologist.6-6-506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004965279
258 rdf:type schema:CreativeWork
259 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
260 schema:name Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro, Tokyo, Japan
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
263 schema:name Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro, Tokyo, Japan
264 Genomic Sciences Center, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, Japan
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...