Facilitating the development of controlled vocabularies for metabolomics technologies with text mining View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-04

AUTHORS

Irena Spasić, Daniel Schober, Susanna-Assunta Sansone, Dietrich Rebholz-Schuhmann, Douglas B Kell, Norman W Paton

ABSTRACT

BACKGROUND: Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually. RESULTS: We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts. CONCLUSIONS: We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods. More... »

PAGES

s5

References to SciGraph publications

  • 2007-09. The metabolomics standards initiative (MSI) in METABOLOMICS
  • 1998. Text mining at the term level in PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY
  • 2004-05. Data standards for 'omic' science in NATURE BIOTECHNOLOGY
  • 2007-11. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration in NATURE BIOTECHNOLOGY
  • 2007-08. The Metabolomics Standards Initiative in NATURE BIOTECHNOLOGY
  • 2007-09. Metabolomics standards initiative: ontology working group work in progress in METABOLOMICS
  • 2004-12. A proposed framework for the description of plant metabolomics experiments and their results in NATURE BIOTECHNOLOGY
  • 2006-02. Literature mining for the biologist: from information retrieval to biological discovery in NATURE REVIEWS GENETICS
  • 2005-04. Magnetic resonance imaging, microscopy, and spectroscopy of the central nervous system in experimental animals in NEUROTHERAPEUTICS
  • 2007. Mesh in ENCYCLOPEDIC DICTIONARY OF POLYMERS
  • 2007. PMC in ENCYCLOPEDIC DICTIONARY OF POLYMERS
  • 2006-12. MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics in BMC BIOINFORMATICS
  • 2005. Characterizing Biomedical Concept Relationships in MEDICAL INFORMATICS
  • 2006. Entrez in ENCYCLOPEDIC REFERENCE OF GENOMICS AND PROTEOMICS IN MOLECULAR MEDICINE
  • 2003-12. PubMatrix: a tool for multiplex literature mining in BMC BIOINFORMATICS
  • 2007. Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community in WORKFLOWS FOR E-SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s5

    DOI

    http://dx.doi.org/10.1186/1471-2105-9-s5-s5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013406449

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18460187


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Abstracting and Indexing as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, Gas", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Information Storage and Retrieval", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MEDLINE", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Spectroscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Natural Language Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Systems Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Systems Integration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Terminology as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "United States", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "User-Computer Interface", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vocabulary, Controlled", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Integrative Systems Biology, The University of Manchester, 131 Princess Street, M1 7ND, Manchester, UK", 
                "School of Computer Science, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spasi\u0107", 
            "givenName": "Irena", 
            "id": "sg:person.0650253652.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650253652.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute", 
              "id": "https://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "The European Bioinformatics Institute, EMBL Outstation - Hinxton, Wellcome Trust Genome Campus, CB10 1SD, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schober", 
            "givenName": "Daniel", 
            "id": "sg:person.01070131350.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070131350.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute", 
              "id": "https://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "The European Bioinformatics Institute, EMBL Outstation - Hinxton, Wellcome Trust Genome Campus, CB10 1SD, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sansone", 
            "givenName": "Susanna-Assunta", 
            "id": "sg:person.0635417117.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635417117.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute", 
              "id": "https://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "The European Bioinformatics Institute, EMBL Outstation - Hinxton, Wellcome Trust Genome Campus, CB10 1SD, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rebholz-Schuhmann", 
            "givenName": "Dietrich", 
            "id": "sg:person.01365176406.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365176406.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Integrative Systems Biology, The University of Manchester, 131 Princess Street, M1 7ND, Manchester, UK", 
                "School of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kell", 
            "givenName": "Douglas B", 
            "id": "sg:person.01032405132.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032405132.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Integrative Systems Biology, The University of Manchester, 131 Princess Street, M1 7ND, Manchester, UK", 
                "School of Computer Science, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paton", 
            "givenName": "Norman W", 
            "id": "sg:person.015261070604.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261070604.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.5715/jnlp.6.3_145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001128460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbl027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002564469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84628-757-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002882600", 
              "https://doi.org/10.1007/978-1-84628-757-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/omi.2006.10.185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003775044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/omi.2006.10.84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006500443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-29623-9_6916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010215968", 
              "https://doi.org/10.1007/3-540-29623-9_6916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011616497", 
              "https://doi.org/10.1038/nrg1768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011616497", 
              "https://doi.org/10.1038/nrg1768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-30160-0_7206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013567201", 
              "https://doi.org/10.1007/978-0-387-30160-0_7206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(94)80693-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014718505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2005.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017352953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2005.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017352953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-30160-0_8750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017398872", 
              "https://doi.org/10.1007/978-0-387-30160-0_8750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-6446(02)02286-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018567670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023320837", 
              "https://doi.org/10.1038/nbt1041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023320837", 
              "https://doi.org/10.1038/nbt1041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/6.3.239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023535704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-25739-x_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023581924", 
              "https://doi.org/10.1007/0-387-25739-x_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trac.2004.11.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025000244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2004.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026023892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0504-613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026730238", 
              "https://doi.org/10.1038/nbt0504-613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0504-613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026730238", 
              "https://doi.org/10.1038/nbt0504-613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028001312", 
              "https://doi.org/10.1038/nbt1346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-007-0070-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028319004", 
              "https://doi.org/10.1007/s11306-007-0070-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-007-0069-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028640196", 
              "https://doi.org/10.1007/s11306-007-0069-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0807-846b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028899298", 
              "https://doi.org/10.1038/nbt0807-846b"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030115124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030142188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/omi.2006.10.145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034958399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035489630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbl008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040015289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/omi.2006.10.199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042237937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042802800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0094806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043777096", 
              "https://doi.org/10.1007/bfb0094806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1602/neurorx.2.2.250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044980222", 
              "https://doi.org/10.1602/neurorx.2.2.250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1197/jamia.m1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045568597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/991250.991317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046630953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046925392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-4-61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047156421", 
              "https://doi.org/10.1186/1471-2105-4-61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-4-61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047156421", 
              "https://doi.org/10.1186/1471-2105-4-61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052212053", 
              "https://doi.org/10.1186/1471-2105-7-281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1386-5056(97)00094-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052544449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbl012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053035952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac050936w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac050936w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1075/term.3.2.03kag", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058246500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074991669", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075223184", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075243203", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1055/s-0038-1638470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077311240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.humrep.a138442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082476575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083303257", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470114735.hawley13602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089858343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812776303_0039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096071090"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-04", 
        "datePublishedReg": "2008-04-01", 
        "description": "BACKGROUND: Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually.\nRESULTS: We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts.\nCONCLUSIONS: We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2105-9-s5-s5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2777265", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2780942", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2779388", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2758011", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3761318", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Facilitating the development of controlled vocabularies for metabolomics technologies with text mining", 
        "pagination": "s5", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3fddf0c3c5991c6a24c149622b6dc95d7f86ee31b45a5f32751c3b56e93fe932"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18460187"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-9-s5-s5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013406449"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-9-s5-s5", 
          "https://app.dimensions.ai/details/publication/pub.1013406449"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000549.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2105-9-S5-S5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    334 TRIPLES      21 PREDICATES      92 URIs      36 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-9-s5-s5 schema:about N002df9bd8eb542fb8a6b3be89fe12275
    2 N0981e231b3fb486491f16067bd2e0683
    3 N0b492e64f7964c549cd487d9ea769b92
    4 N1aff55bb7da24ac6aed618dfa42ca522
    5 N1e262173699642fda08ab63db6f0c90b
    6 N3c6f3604912742fba40107f0ca442052
    7 N6b7d21ba196946a59ffb3e096fd9ab71
    8 N7f969a9e22d949b18fe0494d5e000001
    9 N826d17162fac43a688b7757f06cec110
    10 Nb6b68c80f3784c67a6a68db01bea1689
    11 Nbe720aba7e0542fdacde3105c3f7ab57
    12 Nc55dcafb144c466a9090857d2f1af2e8
    13 Nc5e46abe51c54d56a01d1b7e1fe8deab
    14 Ndb3e06081a374a27b0e68d4b66650782
    15 Ne927d4b51689418eb589a6febb116b00
    16 anzsrc-for:08
    17 anzsrc-for:0801
    18 schema:author N60b9d947445a40cab71d22716ae26967
    19 schema:citation sg:pub.10.1007/0-387-25739-x_7
    20 sg:pub.10.1007/3-540-29623-9_6916
    21 sg:pub.10.1007/978-0-387-30160-0_7206
    22 sg:pub.10.1007/978-0-387-30160-0_8750
    23 sg:pub.10.1007/978-1-84628-757-2_19
    24 sg:pub.10.1007/bfb0094806
    25 sg:pub.10.1007/s11306-007-0069-z
    26 sg:pub.10.1007/s11306-007-0070-6
    27 sg:pub.10.1038/nbt0504-613
    28 sg:pub.10.1038/nbt0807-846b
    29 sg:pub.10.1038/nbt1041
    30 sg:pub.10.1038/nbt1346
    31 sg:pub.10.1038/nrg1768
    32 sg:pub.10.1186/1471-2105-4-61
    33 sg:pub.10.1186/1471-2105-7-281
    34 sg:pub.10.1602/neurorx.2.2.250
    35 https://app.dimensions.ai/details/publication/pub.1074991669
    36 https://app.dimensions.ai/details/publication/pub.1075223184
    37 https://app.dimensions.ai/details/publication/pub.1075243203
    38 https://app.dimensions.ai/details/publication/pub.1083303257
    39 https://doi.org/10.1002/9780470114735.hawley13602
    40 https://doi.org/10.1016/j.jbi.2004.08.004
    41 https://doi.org/10.1016/j.jbi.2005.09.005
    42 https://doi.org/10.1016/j.trac.2004.11.021
    43 https://doi.org/10.1016/s0006-3495(94)80693-9
    44 https://doi.org/10.1016/s1359-6446(02)02286-9
    45 https://doi.org/10.1016/s1386-5056(97)00094-4
    46 https://doi.org/10.1021/ac050936w
    47 https://doi.org/10.1055/s-0038-1638470
    48 https://doi.org/10.1075/term.3.2.03kag
    49 https://doi.org/10.1089/omi.2006.10.145
    50 https://doi.org/10.1089/omi.2006.10.185
    51 https://doi.org/10.1089/omi.2006.10.199
    52 https://doi.org/10.1089/omi.2006.10.84
    53 https://doi.org/10.1093/bib/6.3.239
    54 https://doi.org/10.1093/bib/bbl008
    55 https://doi.org/10.1093/bib/bbl012
    56 https://doi.org/10.1093/bib/bbl027
    57 https://doi.org/10.1093/bioinformatics/bti381
    58 https://doi.org/10.1093/bioinformatics/btl005
    59 https://doi.org/10.1093/bioinformatics/btn117
    60 https://doi.org/10.1093/nar/gkg538
    61 https://doi.org/10.1093/nar/gkh061
    62 https://doi.org/10.1093/oxfordjournals.humrep.a138442
    63 https://doi.org/10.1142/9789812776303_0039
    64 https://doi.org/10.1197/jamia.m1133
    65 https://doi.org/10.3115/991250.991317
    66 https://doi.org/10.5715/jnlp.6.3_145
    67 schema:datePublished 2008-04
    68 schema:datePublishedReg 2008-04-01
    69 schema:description BACKGROUND: Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually. RESULTS: We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts. CONCLUSIONS: We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods.
    70 schema:genre research_article
    71 schema:inLanguage en
    72 schema:isAccessibleForFree true
    73 schema:isPartOf N168d677db3334ffdb9ecab8783a190f4
    74 Nfc5d0a8915074491a0e06d14e4616b1d
    75 sg:journal.1023786
    76 schema:name Facilitating the development of controlled vocabularies for metabolomics technologies with text mining
    77 schema:pagination s5
    78 schema:productId N10410ad0ec8d47959eeacf9d50a67a17
    79 N51e7b50a23f844549c1ee9ae4f7335ba
    80 N59854091bf0644dda6c5b3eab96fb055
    81 Na0e7f5c56c4f4b6ba73b17aab4d60347
    82 Ne67ef1da1cee4712b57c350cbb6de42c
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013406449
    84 https://doi.org/10.1186/1471-2105-9-s5-s5
    85 schema:sdDatePublished 2019-04-10T17:37
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher Nd1ee12615eb54fb39a068ac0fc42a687
    88 schema:url http://link.springer.com/10.1186%2F1471-2105-9-S5-S5
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N002df9bd8eb542fb8a6b3be89fe12275 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Systems Integration
    94 rdf:type schema:DefinedTerm
    95 N0981e231b3fb486491f16067bd2e0683 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name United States
    97 rdf:type schema:DefinedTerm
    98 N0b492e64f7964c549cd487d9ea769b92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Terminology as Topic
    100 rdf:type schema:DefinedTerm
    101 N10410ad0ec8d47959eeacf9d50a67a17 schema:name doi
    102 schema:value 10.1186/1471-2105-9-s5-s5
    103 rdf:type schema:PropertyValue
    104 N168d677db3334ffdb9ecab8783a190f4 schema:issueNumber Suppl 5
    105 rdf:type schema:PublicationIssue
    106 N1aff55bb7da24ac6aed618dfa42ca522 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Vocabulary, Controlled
    108 rdf:type schema:DefinedTerm
    109 N1e262173699642fda08ab63db6f0c90b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Natural Language Processing
    111 rdf:type schema:DefinedTerm
    112 N3c6f3604912742fba40107f0ca442052 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Technology
    114 rdf:type schema:DefinedTerm
    115 N48a3965700cf4968b9c08e65912b7d15 rdf:first sg:person.01032405132.18
    116 rdf:rest Ndfbfe657886245b38afeab5c8a5a4d8f
    117 N51e7b50a23f844549c1ee9ae4f7335ba schema:name readcube_id
    118 schema:value 3fddf0c3c5991c6a24c149622b6dc95d7f86ee31b45a5f32751c3b56e93fe932
    119 rdf:type schema:PropertyValue
    120 N59854091bf0644dda6c5b3eab96fb055 schema:name dimensions_id
    121 schema:value pub.1013406449
    122 rdf:type schema:PropertyValue
    123 N60b9d947445a40cab71d22716ae26967 rdf:first sg:person.0650253652.04
    124 rdf:rest Nd77d456b260d4a85b42e1377a4c60f7a
    125 N6b7d21ba196946a59ffb3e096fd9ab71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Systems Biology
    127 rdf:type schema:DefinedTerm
    128 N7f969a9e22d949b18fe0494d5e000001 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name MEDLINE
    130 rdf:type schema:DefinedTerm
    131 N826d17162fac43a688b7757f06cec110 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Chromatography, Gas
    133 rdf:type schema:DefinedTerm
    134 N8607e2cd469a4b3c8e55e6c4c67af5b4 rdf:first sg:person.01365176406.65
    135 rdf:rest N48a3965700cf4968b9c08e65912b7d15
    136 Na0e7f5c56c4f4b6ba73b17aab4d60347 schema:name pubmed_id
    137 schema:value 18460187
    138 rdf:type schema:PropertyValue
    139 Nb6b68c80f3784c67a6a68db01bea1689 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Metabolism
    141 rdf:type schema:DefinedTerm
    142 Nbe720aba7e0542fdacde3105c3f7ab57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name User-Computer Interface
    144 rdf:type schema:DefinedTerm
    145 Nc55dcafb144c466a9090857d2f1af2e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Information Storage and Retrieval
    147 rdf:type schema:DefinedTerm
    148 Nc5e46abe51c54d56a01d1b7e1fe8deab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Pattern Recognition, Automated
    150 rdf:type schema:DefinedTerm
    151 Nd1ee12615eb54fb39a068ac0fc42a687 schema:name Springer Nature - SN SciGraph project
    152 rdf:type schema:Organization
    153 Nd77d456b260d4a85b42e1377a4c60f7a rdf:first sg:person.01070131350.91
    154 rdf:rest Nd934ba16bb4f4dbb820391a6a0326f9e
    155 Nd934ba16bb4f4dbb820391a6a0326f9e rdf:first sg:person.0635417117.92
    156 rdf:rest N8607e2cd469a4b3c8e55e6c4c67af5b4
    157 Ndb3e06081a374a27b0e68d4b66650782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Magnetic Resonance Spectroscopy
    159 rdf:type schema:DefinedTerm
    160 Ndfbfe657886245b38afeab5c8a5a4d8f rdf:first sg:person.015261070604.21
    161 rdf:rest rdf:nil
    162 Ne67ef1da1cee4712b57c350cbb6de42c schema:name nlm_unique_id
    163 schema:value 100965194
    164 rdf:type schema:PropertyValue
    165 Ne927d4b51689418eb589a6febb116b00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Abstracting and Indexing as Topic
    167 rdf:type schema:DefinedTerm
    168 Nfc5d0a8915074491a0e06d14e4616b1d schema:volumeNumber 9
    169 rdf:type schema:PublicationVolume
    170 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Information and Computing Sciences
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Artificial Intelligence and Image Processing
    175 rdf:type schema:DefinedTerm
    176 sg:grant.2758011 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-s5-s5
    177 rdf:type schema:MonetaryGrant
    178 sg:grant.2777265 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-s5-s5
    179 rdf:type schema:MonetaryGrant
    180 sg:grant.2779388 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-s5-s5
    181 rdf:type schema:MonetaryGrant
    182 sg:grant.2780942 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-s5-s5
    183 rdf:type schema:MonetaryGrant
    184 sg:grant.3761318 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-s5-s5
    185 rdf:type schema:MonetaryGrant
    186 sg:journal.1023786 schema:issn 1471-2105
    187 schema:name BMC Bioinformatics
    188 rdf:type schema:Periodical
    189 sg:person.01032405132.18 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    190 schema:familyName Kell
    191 schema:givenName Douglas B
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032405132.18
    193 rdf:type schema:Person
    194 sg:person.01070131350.91 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
    195 schema:familyName Schober
    196 schema:givenName Daniel
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070131350.91
    198 rdf:type schema:Person
    199 sg:person.01365176406.65 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
    200 schema:familyName Rebholz-Schuhmann
    201 schema:givenName Dietrich
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365176406.65
    203 rdf:type schema:Person
    204 sg:person.015261070604.21 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    205 schema:familyName Paton
    206 schema:givenName Norman W
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261070604.21
    208 rdf:type schema:Person
    209 sg:person.0635417117.92 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
    210 schema:familyName Sansone
    211 schema:givenName Susanna-Assunta
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635417117.92
    213 rdf:type schema:Person
    214 sg:person.0650253652.04 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    215 schema:familyName Spasić
    216 schema:givenName Irena
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650253652.04
    218 rdf:type schema:Person
    219 sg:pub.10.1007/0-387-25739-x_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023581924
    220 https://doi.org/10.1007/0-387-25739-x_7
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/3-540-29623-9_6916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010215968
    223 https://doi.org/10.1007/3-540-29623-9_6916
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/978-0-387-30160-0_7206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013567201
    226 https://doi.org/10.1007/978-0-387-30160-0_7206
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/978-0-387-30160-0_8750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017398872
    229 https://doi.org/10.1007/978-0-387-30160-0_8750
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/978-1-84628-757-2_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002882600
    232 https://doi.org/10.1007/978-1-84628-757-2_19
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/bfb0094806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043777096
    235 https://doi.org/10.1007/bfb0094806
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s11306-007-0069-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028640196
    238 https://doi.org/10.1007/s11306-007-0069-z
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s11306-007-0070-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028319004
    241 https://doi.org/10.1007/s11306-007-0070-6
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nbt0504-613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026730238
    244 https://doi.org/10.1038/nbt0504-613
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nbt0807-846b schema:sameAs https://app.dimensions.ai/details/publication/pub.1028899298
    247 https://doi.org/10.1038/nbt0807-846b
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nbt1041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320837
    250 https://doi.org/10.1038/nbt1041
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
    253 https://doi.org/10.1038/nbt1346
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nrg1768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011616497
    256 https://doi.org/10.1038/nrg1768
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/1471-2105-4-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047156421
    259 https://doi.org/10.1186/1471-2105-4-61
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/1471-2105-7-281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052212053
    262 https://doi.org/10.1186/1471-2105-7-281
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1602/neurorx.2.2.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044980222
    265 https://doi.org/10.1602/neurorx.2.2.250
    266 rdf:type schema:CreativeWork
    267 https://app.dimensions.ai/details/publication/pub.1074991669 schema:CreativeWork
    268 https://app.dimensions.ai/details/publication/pub.1075223184 schema:CreativeWork
    269 https://app.dimensions.ai/details/publication/pub.1075243203 schema:CreativeWork
    270 https://app.dimensions.ai/details/publication/pub.1083303257 schema:CreativeWork
    271 https://doi.org/10.1002/9780470114735.hawley13602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089858343
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/j.jbi.2004.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026023892
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/j.jbi.2005.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017352953
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1016/j.trac.2004.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025000244
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1016/s0006-3495(94)80693-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014718505
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1016/s1359-6446(02)02286-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018567670
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1016/s1386-5056(97)00094-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052544449
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1021/ac050936w schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997210
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1055/s-0038-1638470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077311240
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1075/term.3.2.03kag schema:sameAs https://app.dimensions.ai/details/publication/pub.1058246500
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1089/omi.2006.10.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034958399
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1089/omi.2006.10.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003775044
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1089/omi.2006.10.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042237937
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1089/omi.2006.10.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006500443
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1093/bib/6.3.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023535704
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1093/bib/bbl008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040015289
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1093/bib/bbl012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053035952
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1093/bib/bbl027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002564469
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1093/bioinformatics/bti381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035489630
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1093/bioinformatics/btl005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046925392
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1093/bioinformatics/btn117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030142188
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1093/nar/gkg538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030115124
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1093/nar/gkh061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042802800
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1093/oxfordjournals.humrep.a138442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082476575
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1142/9789812776303_0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096071090
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1197/jamia.m1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045568597
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.3115/991250.991317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046630953
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.5715/jnlp.6.3_145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001128460
    326 rdf:type schema:CreativeWork
    327 https://www.grid.ac/institutes/grid.225360.0 schema:alternateName European Bioinformatics Institute
    328 schema:name The European Bioinformatics Institute, EMBL Outstation - Hinxton, Wellcome Trust Genome Campus, CB10 1SD, Cambridge, UK
    329 rdf:type schema:Organization
    330 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
    331 schema:name Manchester Centre for Integrative Systems Biology, The University of Manchester, 131 Princess Street, M1 7ND, Manchester, UK
    332 School of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK
    333 School of Computer Science, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK
    334 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...