Ontology Design Patterns for bio-ontologies: a case study on the Cell Cycle Ontology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-04-29

AUTHORS

Mikel Egaña Aranguren, Erick Antezana, Martin Kuiper, Robert Stevens

ABSTRACT

BACKGROUND: Bio-ontologies are key elements of knowledge management in bioinformatics. Rich and rigorous bio-ontologies should represent biological knowledge with high fidelity and robustness. The richness in bio-ontologies is a prior condition for diverse and efficient reasoning, and hence querying and hypothesis validation. Rigour allows a more consistent maintenance. Modelling such bio-ontologies is, however, a difficult task for bio-ontologists, because the necessary richness and rigour is difficult to achieve without extensive training. RESULTS: Analogous to design patterns in software engineering, Ontology Design Patterns are solutions to typical modelling problems that bio-ontologists can use when building bio-ontologies. They offer a means of creating rich and rigorous bio-ontologies with reduced effort. The concept of Ontology Design Patterns is described and documentation and application methodologies for Ontology Design Patterns are presented. Some real-world use cases of Ontology Design Patterns are provided and tested in the Cell Cycle Ontology. Ontology Design Patterns, including those tested in the Cell Cycle Ontology, can be explored in the Ontology Design Patterns public catalogue that has been created based on the documentation system presented (http://odps.sourceforge.net/). CONCLUSIONS: Ontology Design Patterns provide a method for rich and rigorous modelling in bio-ontologies. They also offer advantages at different development levels (such as design, implementation and communication) enabling, if used, a more modular, well-founded and richer representation of the biological knowledge. This representation will produce a more efficient knowledge management in the long term. More... »

PAGES

s1-s1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s1

DOI

http://dx.doi.org/10.1186/1471-2105-9-s5-s1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039274794

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18460183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Cycle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Database Management Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semantics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vocabulary, Controlled", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, M13 9PL Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, M13 9PL Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aranguren", 
        "givenName": "Mikel Ega\u00f1a", 
        "id": "sg:person.01237207427.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237207427.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium", 
            "Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antezana", 
        "givenName": "Erick", 
        "id": "sg:person.01106302166.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106302166.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium", 
            "Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuiper", 
        "givenName": "Martin", 
        "id": "sg:person.01006351436.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006351436.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, M13 9PL Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, M13 9PL Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Robert", 
        "id": "sg:person.0653547307.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/11901181_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025561429", 
          "https://doi.org/10.1007/11901181_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041202090", 
          "https://doi.org/10.1186/1471-2105-8-57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-5-r46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015285227", 
          "https://doi.org/10.1186/gb-2005-6-5-r46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11574620_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028179003", 
          "https://doi.org/10.1007/11574620_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11814771_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033805137", 
          "https://doi.org/10.1007/11814771_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30475-3_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031860183", 
          "https://doi.org/10.1007/978-3-540-30475-3_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24745-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045918627", 
          "https://doi.org/10.1007/978-3-540-24745-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005389021", 
          "https://doi.org/10.1186/1471-2105-8-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11799511_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047278175", 
          "https://doi.org/10.1007/11799511_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024174379", 
          "https://doi.org/10.1186/1471-2105-8-134"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04-29", 
    "datePublishedReg": "2008-04-29", 
    "description": "BACKGROUND: Bio-ontologies are key elements of knowledge management in bioinformatics. Rich and rigorous bio-ontologies should represent biological knowledge with high fidelity and robustness. The richness in bio-ontologies is a prior condition for diverse and efficient reasoning, and hence querying and hypothesis validation. Rigour allows a more consistent maintenance. Modelling such bio-ontologies is, however, a difficult task for bio-ontologists, because the necessary richness and rigour is difficult to achieve without extensive training.\nRESULTS: Analogous to design patterns in software engineering, Ontology Design Patterns are solutions to typical modelling problems that bio-ontologists can use when building bio-ontologies. They offer a means of creating rich and rigorous bio-ontologies with reduced effort. The concept of Ontology Design Patterns is described and documentation and application methodologies for Ontology Design Patterns are presented. Some real-world use cases of Ontology Design Patterns are provided and tested in the Cell Cycle Ontology. Ontology Design Patterns, including those tested in the Cell Cycle Ontology, can be explored in the Ontology Design Patterns public catalogue that has been created based on the documentation system presented (http://odps.sourceforge.net/).\nCONCLUSIONS: Ontology Design Patterns provide a method for rich and rigorous modelling in bio-ontologies. They also offer advantages at different development levels (such as design, implementation and communication) enabling, if used, a more modular, well-founded and richer representation of the biological knowledge. This representation will produce a more efficient knowledge management in the long term.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-9-s5-s1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "ontology design patterns", 
      "Cell Cycle Ontology", 
      "design patterns", 
      "bio-ontologies", 
      "real-world use cases", 
      "knowledge management", 
      "efficient knowledge management", 
      "software engineering", 
      "biological knowledge", 
      "necessary richness", 
      "efficient reasoning", 
      "use cases", 
      "rich representation", 
      "hypothesis validation", 
      "ontology", 
      "modelling problems", 
      "difficult task", 
      "public catalog", 
      "reduced effort", 
      "documentation system", 
      "consistent maintenance", 
      "application methodology", 
      "rigorous modelling", 
      "representation", 
      "high fidelity", 
      "case study", 
      "extensive training", 
      "bioinformatics", 
      "task", 
      "reasoning", 
      "prior conditions", 
      "key elements", 
      "robustness", 
      "knowledge", 
      "management", 
      "engineering", 
      "methodology", 
      "system", 
      "catalogue", 
      "documentation", 
      "advantages", 
      "concept", 
      "training", 
      "modelling", 
      "different development levels", 
      "solution", 
      "validation", 
      "fidelity", 
      "efforts", 
      "method", 
      "patterns", 
      "development level", 
      "rigor", 
      "terms", 
      "maintenance", 
      "means", 
      "elements", 
      "cases", 
      "long term", 
      "levels", 
      "richness", 
      "conditions", 
      "study", 
      "problem", 
      "typical modelling problems", 
      "Cycle Ontology", 
      "Ontology Design Patterns public catalogue", 
      "Design Patterns public catalogue", 
      "Patterns public catalogue"
    ], 
    "name": "Ontology Design Patterns for bio-ontologies: a case study on the Cell Cycle Ontology", 
    "pagination": "s1-s1", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039274794"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-s5-s1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18460183"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-s5-s1", 
      "https://app.dimensions.ai/details/publication/pub.1039274794"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_460.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-9-s5-s1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s5-s1'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      22 PREDICATES      116 URIs      97 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-s5-s1 schema:about N1b428261a0744c40be30f4922d68d659
2 N362a741dcf034471aa586ba470aa81e4
3 N4729a9aa277e4ee3a93d14ca9daf9b32
4 N5d759b1924ed411a83a071a863837d69
5 N994192a752b14d3386ee399c44b36279
6 N9ae28b869bd94e62b31dec7973d4bf9a
7 Nc37a9895502649c08857926c6903fe7b
8 Nc737f6172107411b8827e8f96da3f728
9 Nea76ee6175724cf2a64fdbf4e48fce0e
10 Nef259b06766d485895fe928b7ec8aec4
11 anzsrc-for:08
12 anzsrc-for:0806
13 schema:author N42993297c4b348a1890fd8742eb566ac
14 schema:citation sg:pub.10.1007/11574620_21
15 sg:pub.10.1007/11799511_4
16 sg:pub.10.1007/11814771_26
17 sg:pub.10.1007/11901181_20
18 sg:pub.10.1007/978-3-540-24745-6_6
19 sg:pub.10.1007/978-3-540-30475-3_15
20 sg:pub.10.1038/75556
21 sg:pub.10.1186/1471-2105-8-134
22 sg:pub.10.1186/1471-2105-8-57
23 sg:pub.10.1186/1471-2105-8-8
24 sg:pub.10.1186/gb-2005-6-5-r46
25 schema:datePublished 2008-04-29
26 schema:datePublishedReg 2008-04-29
27 schema:description BACKGROUND: Bio-ontologies are key elements of knowledge management in bioinformatics. Rich and rigorous bio-ontologies should represent biological knowledge with high fidelity and robustness. The richness in bio-ontologies is a prior condition for diverse and efficient reasoning, and hence querying and hypothesis validation. Rigour allows a more consistent maintenance. Modelling such bio-ontologies is, however, a difficult task for bio-ontologists, because the necessary richness and rigour is difficult to achieve without extensive training. RESULTS: Analogous to design patterns in software engineering, Ontology Design Patterns are solutions to typical modelling problems that bio-ontologists can use when building bio-ontologies. They offer a means of creating rich and rigorous bio-ontologies with reduced effort. The concept of Ontology Design Patterns is described and documentation and application methodologies for Ontology Design Patterns are presented. Some real-world use cases of Ontology Design Patterns are provided and tested in the Cell Cycle Ontology. Ontology Design Patterns, including those tested in the Cell Cycle Ontology, can be explored in the Ontology Design Patterns public catalogue that has been created based on the documentation system presented (http://odps.sourceforge.net/). CONCLUSIONS: Ontology Design Patterns provide a method for rich and rigorous modelling in bio-ontologies. They also offer advantages at different development levels (such as design, implementation and communication) enabling, if used, a more modular, well-founded and richer representation of the biological knowledge. This representation will produce a more efficient knowledge management in the long term.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N125781dc960e4bceb61279f9a9651c08
32 N5defd287a0684ee69bea8629164a0661
33 sg:journal.1023786
34 schema:keywords Cell Cycle Ontology
35 Cycle Ontology
36 Design Patterns public catalogue
37 Ontology Design Patterns public catalogue
38 Patterns public catalogue
39 advantages
40 application methodology
41 bio-ontologies
42 bioinformatics
43 biological knowledge
44 case study
45 cases
46 catalogue
47 concept
48 conditions
49 consistent maintenance
50 design patterns
51 development level
52 different development levels
53 difficult task
54 documentation
55 documentation system
56 efficient knowledge management
57 efficient reasoning
58 efforts
59 elements
60 engineering
61 extensive training
62 fidelity
63 high fidelity
64 hypothesis validation
65 key elements
66 knowledge
67 knowledge management
68 levels
69 long term
70 maintenance
71 management
72 means
73 method
74 methodology
75 modelling
76 modelling problems
77 necessary richness
78 ontology
79 ontology design patterns
80 patterns
81 prior conditions
82 problem
83 public catalog
84 real-world use cases
85 reasoning
86 reduced effort
87 representation
88 rich representation
89 richness
90 rigor
91 rigorous modelling
92 robustness
93 software engineering
94 solution
95 study
96 system
97 task
98 terms
99 training
100 typical modelling problems
101 use cases
102 validation
103 schema:name Ontology Design Patterns for bio-ontologies: a case study on the Cell Cycle Ontology
104 schema:pagination s1-s1
105 schema:productId N3e406adcc840443981701ecfcba59fc8
106 N5e00bb0f246a4e24b8756d8a530d7ace
107 Nab156398d9f84ae69600d3cc9e4855e6
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039274794
109 https://doi.org/10.1186/1471-2105-9-s5-s1
110 schema:sdDatePublished 2022-01-01T18:18
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N421fe66f832143b4a735d3bc9142114a
113 schema:url https://doi.org/10.1186/1471-2105-9-s5-s1
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0b75bf9016b14275b4e8b2879fb8daf6 rdf:first sg:person.0653547307.62
118 rdf:rest rdf:nil
119 N0eb9db15b7be4155bed4a4bc4d597610 rdf:first sg:person.01006351436.07
120 rdf:rest N0b75bf9016b14275b4e8b2879fb8daf6
121 N125781dc960e4bceb61279f9a9651c08 schema:volumeNumber 9
122 rdf:type schema:PublicationVolume
123 N1b428261a0744c40be30f4922d68d659 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name User-Computer Interface
125 rdf:type schema:DefinedTerm
126 N362a741dcf034471aa586ba470aa81e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Cell Cycle
128 rdf:type schema:DefinedTerm
129 N3e406adcc840443981701ecfcba59fc8 schema:name doi
130 schema:value 10.1186/1471-2105-9-s5-s1
131 rdf:type schema:PropertyValue
132 N421fe66f832143b4a735d3bc9142114a schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N42993297c4b348a1890fd8742eb566ac rdf:first sg:person.01237207427.01
135 rdf:rest N81fc801ab13c4603aa015704c012ea10
136 N4729a9aa277e4ee3a93d14ca9daf9b32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Artificial Intelligence
138 rdf:type schema:DefinedTerm
139 N5d759b1924ed411a83a071a863837d69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Semantics
141 rdf:type schema:DefinedTerm
142 N5defd287a0684ee69bea8629164a0661 schema:issueNumber Suppl 5
143 rdf:type schema:PublicationIssue
144 N5e00bb0f246a4e24b8756d8a530d7ace schema:name pubmed_id
145 schema:value 18460183
146 rdf:type schema:PropertyValue
147 N81fc801ab13c4603aa015704c012ea10 rdf:first sg:person.01106302166.87
148 rdf:rest N0eb9db15b7be4155bed4a4bc4d597610
149 N994192a752b14d3386ee399c44b36279 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Vocabulary, Controlled
151 rdf:type schema:DefinedTerm
152 N9ae28b869bd94e62b31dec7973d4bf9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Computational Biology
154 rdf:type schema:DefinedTerm
155 Nab156398d9f84ae69600d3cc9e4855e6 schema:name dimensions_id
156 schema:value pub.1039274794
157 rdf:type schema:PropertyValue
158 Nc37a9895502649c08857926c6903fe7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Pattern Recognition, Automated
160 rdf:type schema:DefinedTerm
161 Nc737f6172107411b8827e8f96da3f728 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Models, Biological
163 rdf:type schema:DefinedTerm
164 Nea76ee6175724cf2a64fdbf4e48fce0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Databases, Factual
166 rdf:type schema:DefinedTerm
167 Nef259b06766d485895fe928b7ec8aec4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Database Management Systems
169 rdf:type schema:DefinedTerm
170 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
171 schema:name Information and Computing Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
174 schema:name Information Systems
175 rdf:type schema:DefinedTerm
176 sg:journal.1023786 schema:issn 1471-2105
177 schema:name BMC Bioinformatics
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.01006351436.07 schema:affiliation grid-institutes:grid.5342.0
181 schema:familyName Kuiper
182 schema:givenName Martin
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006351436.07
184 rdf:type schema:Person
185 sg:person.01106302166.87 schema:affiliation grid-institutes:grid.5342.0
186 schema:familyName Antezana
187 schema:givenName Erick
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106302166.87
189 rdf:type schema:Person
190 sg:person.01237207427.01 schema:affiliation grid-institutes:grid.5379.8
191 schema:familyName Aranguren
192 schema:givenName Mikel Egaña
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237207427.01
194 rdf:type schema:Person
195 sg:person.0653547307.62 schema:affiliation grid-institutes:grid.5379.8
196 schema:familyName Stevens
197 schema:givenName Robert
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62
199 rdf:type schema:Person
200 sg:pub.10.1007/11574620_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028179003
201 https://doi.org/10.1007/11574620_21
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/11799511_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047278175
204 https://doi.org/10.1007/11799511_4
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/11814771_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033805137
207 https://doi.org/10.1007/11814771_26
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/11901181_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025561429
210 https://doi.org/10.1007/11901181_20
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/978-3-540-24745-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045918627
213 https://doi.org/10.1007/978-3-540-24745-6_6
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/978-3-540-30475-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031860183
216 https://doi.org/10.1007/978-3-540-30475-3_15
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
219 https://doi.org/10.1038/75556
220 rdf:type schema:CreativeWork
221 sg:pub.10.1186/1471-2105-8-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024174379
222 https://doi.org/10.1186/1471-2105-8-134
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/1471-2105-8-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041202090
225 https://doi.org/10.1186/1471-2105-8-57
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/1471-2105-8-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005389021
228 https://doi.org/10.1186/1471-2105-8-8
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/gb-2005-6-5-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015285227
231 https://doi.org/10.1186/gb-2005-6-5-r46
232 rdf:type schema:CreativeWork
233 grid-institutes:grid.5342.0 schema:alternateName Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
234 schema:name Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
235 Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
236 rdf:type schema:Organization
237 grid-institutes:grid.5379.8 schema:alternateName School of Computer Science, University of Manchester, Oxford Road, M13 9PL Manchester, UK
238 schema:name School of Computer Science, University of Manchester, Oxford Road, M13 9PL Manchester, UK
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...