Predicting RNA-binding sites of proteins using support vector machines and evolutionary information View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-12

AUTHORS

Cheng-Wei Cheng, Emily Chia-Yu Su, Jenn-Kang Hwang, Ting-Yi Sung, Wen-Lian Hsu

ABSTRACT

BackgroundRNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities.ResultsWe propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed.ConclusionOur results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites. More... »

PAGES

s6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6

DOI

http://dx.doi.org/10.1186/1471-2105-9-s12-s6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043299234

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19091029


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan", 
            "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Cheng-Wei", 
        "id": "sg:person.0623163417.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623163417.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan", 
            "Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan", 
            "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Emily Chia-Yu", 
        "id": "sg:person.01143414205.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143414205.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jenn-Kang", 
        "id": "sg:person.01364151270.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sung", 
        "givenName": "Ting-Yi", 
        "id": "sg:person.01005525217.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005525217.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan", 
            "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Wen-Lian", 
        "id": "sg:person.0750360063.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750360063.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996969", 
          "https://doi.org/10.1186/1471-2105-8-330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11732488_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014576053", 
          "https://doi.org/10.1007/11732488_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038813802", 
          "https://doi.org/10.1186/1471-2105-4-28"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-12", 
    "datePublishedReg": "2008-12-12", 
    "description": "BackgroundRNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities.ResultsWe propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed.ConclusionOur results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-9-s12-s6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "position-specific scoring matrix", 
      "evolutionary information", 
      "site prediction", 
      "RNA-protein interactions", 
      "DNA-binding site prediction", 
      "protein-protein interactions", 
      "identification of RNA", 
      "posttranslational modification sites", 
      "non-interacting residues", 
      "amino acid preferences", 
      "prediction of RNA", 
      "sites of proteins", 
      "posttranscriptional regulation", 
      "performance of RNA", 
      "Predicting RNA", 
      "gene expression", 
      "biological processes", 
      "modification sites", 
      "protein synthesis", 
      "RNA", 
      "PSSM profiles", 
      "amino acids", 
      "neighboring residues", 
      "protein", 
      "essential role", 
      "scoring matrix", 
      "residues", 
      "computational approach", 
      "viral infectivity", 
      "sites", 
      "Matthews correlation coefficient", 
      "biologists", 
      "high specificity", 
      "valuable insights", 
      "interaction", 
      "regulation", 
      "extensive study", 
      "specificity", 
      "expression", 
      "infectivity", 
      "identification", 
      "acid", 
      "insights", 
      "role", 
      "ConclusionOur results", 
      "data sets", 
      "synthesis", 
      "sensitivity", 
      "development", 
      "incorporation", 
      "prediction", 
      "preferences", 
      "profile", 
      "information", 
      "physicochemical properties", 
      "research area", 
      "results", 
      "ResultsWe", 
      "process", 
      "support vector machine model", 
      "study", 
      "approach", 
      "matrix", 
      "data", 
      "area", 
      "prediction performance", 
      "set", 
      "low sensitivity", 
      "correlation", 
      "determination", 
      "system", 
      "dependency", 
      "method", 
      "state", 
      "vector machine model", 
      "model", 
      "properties", 
      "correlation coefficient", 
      "benchmark data sets", 
      "experimental determination", 
      "support vector machine", 
      "terms", 
      "split procedure", 
      "assumption", 
      "overall accuracy", 
      "vector machine", 
      "procedure", 
      "ambiguity", 
      "performance", 
      "coefficient", 
      "machine", 
      "scheme", 
      "accuracy", 
      "machine model", 
      "fitting", 
      "experimental results", 
      "art systems"
    ], 
    "name": "Predicting RNA-binding sites of proteins using support vector machines and evolutionary information", 
    "pagination": "s6", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043299234"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-s12-s6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19091029"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-s12-s6", 
      "https://app.dimensions.ai/details/publication/pub.1043299234"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_473.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-9-s12-s6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      22 PREDICATES      140 URIs      128 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-s12-s6 schema:about N13e575a8c2db4f33b18d48fdab2c47c7
2 N32745ee6f6444f19ad8e22e4880e62bf
3 N37b457075005422fa2a3270bda4cb719
4 N56a9d862b0d542f984f1945e5834cac2
5 N682dc18a2fff497ca372b321e62a4e44
6 N6d16366797fc49ebab8d258682f796bc
7 N720606741d2344ffb0ac946f9d25be42
8 N8b4ffd593b2341b98ec188867243b251
9 N9d61a981b6a248f6a5ae1186ee0f1f32
10 Nb313eaeaacf841d7b57b0445f99256a7
11 Ndd5c3317e6a244318cfdc48d1b8836af
12 Ndf3f2214883f4072a099bcdc3f40f236
13 Nfb20ec53385e4c53af17f33a16064bd7
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author N583d36cd96f0437db6ef3797884478a5
17 schema:citation sg:pub.10.1007/11732488_11
18 sg:pub.10.1007/978-1-4757-2440-0
19 sg:pub.10.1186/1471-2105-4-28
20 sg:pub.10.1186/1471-2105-8-330
21 schema:datePublished 2008-12-12
22 schema:datePublishedReg 2008-12-12
23 schema:description BackgroundRNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities.ResultsWe propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed.ConclusionOur results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N08b401d0962a46bf83fd79ffb384a5a0
28 N61c36bda34174ea3889d6a437216893a
29 sg:journal.1023786
30 schema:keywords ConclusionOur results
31 DNA-binding site prediction
32 Matthews correlation coefficient
33 PSSM profiles
34 Predicting RNA
35 RNA
36 RNA-protein interactions
37 ResultsWe
38 accuracy
39 acid
40 ambiguity
41 amino acid preferences
42 amino acids
43 approach
44 area
45 art systems
46 assumption
47 benchmark data sets
48 biological processes
49 biologists
50 coefficient
51 computational approach
52 correlation
53 correlation coefficient
54 data
55 data sets
56 dependency
57 determination
58 development
59 essential role
60 evolutionary information
61 experimental determination
62 experimental results
63 expression
64 extensive study
65 fitting
66 gene expression
67 high specificity
68 identification
69 identification of RNA
70 incorporation
71 infectivity
72 information
73 insights
74 interaction
75 low sensitivity
76 machine
77 machine model
78 matrix
79 method
80 model
81 modification sites
82 neighboring residues
83 non-interacting residues
84 overall accuracy
85 performance
86 performance of RNA
87 physicochemical properties
88 position-specific scoring matrix
89 posttranscriptional regulation
90 posttranslational modification sites
91 prediction
92 prediction of RNA
93 prediction performance
94 preferences
95 procedure
96 process
97 profile
98 properties
99 protein
100 protein synthesis
101 protein-protein interactions
102 regulation
103 research area
104 residues
105 results
106 role
107 scheme
108 scoring matrix
109 sensitivity
110 set
111 site prediction
112 sites
113 sites of proteins
114 specificity
115 split procedure
116 state
117 study
118 support vector machine
119 support vector machine model
120 synthesis
121 system
122 terms
123 valuable insights
124 vector machine
125 vector machine model
126 viral infectivity
127 schema:name Predicting RNA-binding sites of proteins using support vector machines and evolutionary information
128 schema:pagination s6
129 schema:productId N444c106c63b54266809dc04e6b797d94
130 N495dadee8e5a4f70bd9c80b2bfbdb390
131 Nc22ad666c36645d8b715c14c90929ea4
132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043299234
133 https://doi.org/10.1186/1471-2105-9-s12-s6
134 schema:sdDatePublished 2022-05-20T07:25
135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
136 schema:sdPublisher N00e51d32de934870a38aa000b418d215
137 schema:url https://doi.org/10.1186/1471-2105-9-s12-s6
138 sgo:license sg:explorer/license/
139 sgo:sdDataset articles
140 rdf:type schema:ScholarlyArticle
141 N00e51d32de934870a38aa000b418d215 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N08b401d0962a46bf83fd79ffb384a5a0 schema:volumeNumber 9
144 rdf:type schema:PublicationVolume
145 N13e575a8c2db4f33b18d48fdab2c47c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Neural Networks, Computer
147 rdf:type schema:DefinedTerm
148 N32745ee6f6444f19ad8e22e4880e62bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name DNA
150 rdf:type schema:DefinedTerm
151 N34c5d8c62e61419a95c7fc23b7ce5f9d rdf:first sg:person.01005525217.26
152 rdf:rest Nce7a417c76e849869aecacafd4552acc
153 N37b457075005422fa2a3270bda4cb719 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Evolution, Molecular
155 rdf:type schema:DefinedTerm
156 N444c106c63b54266809dc04e6b797d94 schema:name pubmed_id
157 schema:value 19091029
158 rdf:type schema:PropertyValue
159 N495dadee8e5a4f70bd9c80b2bfbdb390 schema:name dimensions_id
160 schema:value pub.1043299234
161 rdf:type schema:PropertyValue
162 N568cb763bca94c9c88fc8b528d2dd203 rdf:first sg:person.01364151270.35
163 rdf:rest N34c5d8c62e61419a95c7fc23b7ce5f9d
164 N56a9d862b0d542f984f1945e5834cac2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Artificial Intelligence
166 rdf:type schema:DefinedTerm
167 N583d36cd96f0437db6ef3797884478a5 rdf:first sg:person.0623163417.68
168 rdf:rest Ne6ccbca0ef53437db5186815c991e42c
169 N61c36bda34174ea3889d6a437216893a schema:issueNumber Suppl 12
170 rdf:type schema:PublicationIssue
171 N682dc18a2fff497ca372b321e62a4e44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Reproducibility of Results
173 rdf:type schema:DefinedTerm
174 N6d16366797fc49ebab8d258682f796bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name RNA
176 rdf:type schema:DefinedTerm
177 N720606741d2344ffb0ac946f9d25be42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Protein Binding
179 rdf:type schema:DefinedTerm
180 N8b4ffd593b2341b98ec188867243b251 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Amino Acids
182 rdf:type schema:DefinedTerm
183 N9d61a981b6a248f6a5ae1186ee0f1f32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Proteins
185 rdf:type schema:DefinedTerm
186 Nb313eaeaacf841d7b57b0445f99256a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Algorithms
188 rdf:type schema:DefinedTerm
189 Nc22ad666c36645d8b715c14c90929ea4 schema:name doi
190 schema:value 10.1186/1471-2105-9-s12-s6
191 rdf:type schema:PropertyValue
192 Nce7a417c76e849869aecacafd4552acc rdf:first sg:person.0750360063.66
193 rdf:rest rdf:nil
194 Ndd5c3317e6a244318cfdc48d1b8836af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Software
196 rdf:type schema:DefinedTerm
197 Ndf3f2214883f4072a099bcdc3f40f236 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Computational Biology
199 rdf:type schema:DefinedTerm
200 Ne6ccbca0ef53437db5186815c991e42c rdf:first sg:person.01143414205.17
201 rdf:rest N568cb763bca94c9c88fc8b528d2dd203
202 Nfb20ec53385e4c53af17f33a16064bd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Binding Sites
204 rdf:type schema:DefinedTerm
205 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
206 schema:name Biological Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
209 schema:name Biochemistry and Cell Biology
210 rdf:type schema:DefinedTerm
211 sg:journal.1023786 schema:issn 1471-2105
212 schema:name BMC Bioinformatics
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01005525217.26 schema:affiliation grid-institutes:grid.28665.3f
216 schema:familyName Sung
217 schema:givenName Ting-Yi
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005525217.26
219 rdf:type schema:Person
220 sg:person.01143414205.17 schema:affiliation grid-institutes:grid.28665.3f
221 schema:familyName Su
222 schema:givenName Emily Chia-Yu
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143414205.17
224 rdf:type schema:Person
225 sg:person.01364151270.35 schema:affiliation grid-institutes:grid.260539.b
226 schema:familyName Hwang
227 schema:givenName Jenn-Kang
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35
229 rdf:type schema:Person
230 sg:person.0623163417.68 schema:affiliation grid-institutes:grid.28665.3f
231 schema:familyName Cheng
232 schema:givenName Cheng-Wei
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623163417.68
234 rdf:type schema:Person
235 sg:person.0750360063.66 schema:affiliation grid-institutes:grid.28665.3f
236 schema:familyName Hsu
237 schema:givenName Wen-Lian
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750360063.66
239 rdf:type schema:Person
240 sg:pub.10.1007/11732488_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014576053
241 https://doi.org/10.1007/11732488_11
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
244 https://doi.org/10.1007/978-1-4757-2440-0
245 rdf:type schema:CreativeWork
246 sg:pub.10.1186/1471-2105-4-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038813802
247 https://doi.org/10.1186/1471-2105-4-28
248 rdf:type schema:CreativeWork
249 sg:pub.10.1186/1471-2105-8-330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005996969
250 https://doi.org/10.1186/1471-2105-8-330
251 rdf:type schema:CreativeWork
252 grid-institutes:grid.260539.b schema:alternateName Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan
253 schema:name Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan
254 rdf:type schema:Organization
255 grid-institutes:grid.28665.3f schema:alternateName Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan
256 schema:name Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan
257 Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
258 Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan
259 Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...