Predicting RNA-binding sites of proteins using support vector machines and evolutionary information View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-12

AUTHORS

Cheng-Wei Cheng, Emily Chia-Yu Su, Jenn-Kang Hwang, Ting-Yi Sung, Wen-Lian Hsu

ABSTRACT

BACKGROUND: RNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities. RESULTS: We propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%-6.83%, 0.88%-5.33%, and 0.10-0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%-26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed. CONCLUSION: Our results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites. More... »

PAGES

s6-s6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6

DOI

http://dx.doi.org/10.1186/1471-2105-9-s12-s6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043299234

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19091029


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan", 
            "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Cheng-Wei", 
        "id": "sg:person.0623163417.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623163417.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan", 
            "Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan", 
            "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Emily Chia-Yu", 
        "id": "sg:person.01143414205.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143414205.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jenn-Kang", 
        "id": "sg:person.01364151270.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sung", 
        "givenName": "Ting-Yi", 
        "id": "sg:person.01005525217.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005525217.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan", 
            "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Wen-Lian", 
        "id": "sg:person.0750360063.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750360063.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-4-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038813802", 
          "https://doi.org/10.1186/1471-2105-4-28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11732488_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014576053", 
          "https://doi.org/10.1007/11732488_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996969", 
          "https://doi.org/10.1186/1471-2105-8-330"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-12", 
    "datePublishedReg": "2008-12-12", 
    "description": "BACKGROUND: RNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities.\nRESULTS: We propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%-6.83%, 0.88%-5.33%, and 0.10-0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%-26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed.\nCONCLUSION: Our results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-9-s12-s6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "position-specific scoring matrix", 
      "RNA-protein interactions", 
      "evolutionary information", 
      "site prediction", 
      "DNA-binding site prediction", 
      "protein-protein interactions", 
      "identification of RNA", 
      "posttranslational modification sites", 
      "non-interacting residues", 
      "amino acid preferences", 
      "prediction of RNA", 
      "performance of RNA", 
      "sites of proteins", 
      "posttranscriptional regulation", 
      "Predicting RNA", 
      "gene expression", 
      "biological processes", 
      "modification sites", 
      "protein synthesis", 
      "RNA", 
      "amino acids", 
      "neighboring residues", 
      "protein", 
      "PSSM profiles", 
      "essential role", 
      "scoring matrix", 
      "residues", 
      "computational approach", 
      "viral infectivity", 
      "Matthews correlation coefficient", 
      "sites", 
      "biologists", 
      "valuable insights", 
      "high specificity", 
      "interaction", 
      "regulation", 
      "extensive study", 
      "specificity", 
      "expression", 
      "infectivity", 
      "identification", 
      "insights", 
      "acid", 
      "role", 
      "data sets", 
      "synthesis", 
      "incorporation", 
      "development", 
      "sensitivity", 
      "prediction", 
      "preferences", 
      "profile", 
      "research area", 
      "results", 
      "physicochemical properties", 
      "information", 
      "support vector machine model", 
      "process", 
      "study", 
      "approach", 
      "matrix", 
      "prediction performance", 
      "data", 
      "area", 
      "set", 
      "low sensitivity", 
      "correlation", 
      "determination", 
      "system", 
      "method", 
      "dependency", 
      "state", 
      "vector machine model", 
      "model", 
      "properties", 
      "correlation coefficient", 
      "experimental determination", 
      "benchmark data sets", 
      "support vector machine", 
      "terms", 
      "split procedure", 
      "assumption", 
      "overall accuracy", 
      "vector machine", 
      "procedure", 
      "ambiguity", 
      "performance", 
      "coefficient", 
      "machine", 
      "scheme", 
      "accuracy", 
      "machine model", 
      "fitting", 
      "experimental results", 
      "art systems", 
      "RNAProB", 
      "new smoothed position-specific scoring matrix", 
      "smoothed position-specific scoring matrix", 
      "standard PSSM profiles", 
      "three-way data split procedure", 
      "data split procedure", 
      "acid preferences"
    ], 
    "name": "Predicting RNA-binding sites of proteins using support vector machines and evolutionary information", 
    "pagination": "s6-s6", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043299234"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-s12-s6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19091029"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-s12-s6", 
      "https://app.dimensions.ai/details/publication/pub.1043299234"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_461.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-9-s12-s6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      22 PREDICATES      145 URIs      133 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-s12-s6 schema:about N04bdce82aed84c02b53f9e564b672c91
2 N0ed9fa2ef8b348a2bb87597e39bdfd50
3 N32e3512baae1420584664f06bf8ded74
4 N35e004c32cd642a6bcc5049756b6dfe8
5 N59ebd1022c1d4d9eaba886d1c2cd4b32
6 N786fcd93701548d38b39506a04c92c4d
7 N9a76d3e8dba6468e84e4a49d38062e71
8 Na438419348a5422a8d9344e0cfad51c4
9 Na7b64831bb1a452980d23fb63c43da83
10 Nc09fe76758304bf4969620bf0a9f0983
11 Nd46ec5e293d449078924d95f09e29749
12 Ne4a0c163d7a7468b9fa79a44bd9b9c36
13 Nf376ba196754494ca73c9d593327f883
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author N687c05b6184b4fa9b7febb1d3bef0001
17 schema:citation sg:pub.10.1007/11732488_11
18 sg:pub.10.1007/978-1-4757-2440-0
19 sg:pub.10.1186/1471-2105-4-28
20 sg:pub.10.1186/1471-2105-8-330
21 schema:datePublished 2008-12-12
22 schema:datePublishedReg 2008-12-12
23 schema:description BACKGROUND: RNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities. RESULTS: We propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%-6.83%, 0.88%-5.33%, and 0.10-0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%-26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed. CONCLUSION: Our results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N570521a85bd042c8a8369fdbb5ef300f
28 N9748193e6dbb4851885e0615e1ede5e5
29 sg:journal.1023786
30 schema:keywords DNA-binding site prediction
31 Matthews correlation coefficient
32 PSSM profiles
33 Predicting RNA
34 RNA
35 RNA-protein interactions
36 RNAProB
37 accuracy
38 acid
39 acid preferences
40 ambiguity
41 amino acid preferences
42 amino acids
43 approach
44 area
45 art systems
46 assumption
47 benchmark data sets
48 biological processes
49 biologists
50 coefficient
51 computational approach
52 correlation
53 correlation coefficient
54 data
55 data sets
56 data split procedure
57 dependency
58 determination
59 development
60 essential role
61 evolutionary information
62 experimental determination
63 experimental results
64 expression
65 extensive study
66 fitting
67 gene expression
68 high specificity
69 identification
70 identification of RNA
71 incorporation
72 infectivity
73 information
74 insights
75 interaction
76 low sensitivity
77 machine
78 machine model
79 matrix
80 method
81 model
82 modification sites
83 neighboring residues
84 new smoothed position-specific scoring matrix
85 non-interacting residues
86 overall accuracy
87 performance
88 performance of RNA
89 physicochemical properties
90 position-specific scoring matrix
91 posttranscriptional regulation
92 posttranslational modification sites
93 prediction
94 prediction of RNA
95 prediction performance
96 preferences
97 procedure
98 process
99 profile
100 properties
101 protein
102 protein synthesis
103 protein-protein interactions
104 regulation
105 research area
106 residues
107 results
108 role
109 scheme
110 scoring matrix
111 sensitivity
112 set
113 site prediction
114 sites
115 sites of proteins
116 smoothed position-specific scoring matrix
117 specificity
118 split procedure
119 standard PSSM profiles
120 state
121 study
122 support vector machine
123 support vector machine model
124 synthesis
125 system
126 terms
127 three-way data split procedure
128 valuable insights
129 vector machine
130 vector machine model
131 viral infectivity
132 schema:name Predicting RNA-binding sites of proteins using support vector machines and evolutionary information
133 schema:pagination s6-s6
134 schema:productId Naac5a7e75753402ab4da9b3a3545d0dd
135 Nafaf53f4c170487cac5bd2ef7bfbcff7
136 Nfa2af16077054787b12f4a80065a2f5b
137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043299234
138 https://doi.org/10.1186/1471-2105-9-s12-s6
139 schema:sdDatePublished 2022-01-01T18:18
140 schema:sdLicense https://scigraph.springernature.com/explorer/license/
141 schema:sdPublisher N5ad3693361634635b393b53724a053c8
142 schema:url https://doi.org/10.1186/1471-2105-9-s12-s6
143 sgo:license sg:explorer/license/
144 sgo:sdDataset articles
145 rdf:type schema:ScholarlyArticle
146 N00c3eab2f56649bea4d11d47503a9341 rdf:first sg:person.01005525217.26
147 rdf:rest Nd0be307b38b243e598b7044eba8959f7
148 N04bdce82aed84c02b53f9e564b672c91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Amino Acids
150 rdf:type schema:DefinedTerm
151 N0ed9fa2ef8b348a2bb87597e39bdfd50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Evolution, Molecular
153 rdf:type schema:DefinedTerm
154 N32e3512baae1420584664f06bf8ded74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Artificial Intelligence
156 rdf:type schema:DefinedTerm
157 N35e004c32cd642a6bcc5049756b6dfe8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name RNA
159 rdf:type schema:DefinedTerm
160 N3e879ec6ce52416d94c59d7dcc432130 rdf:first sg:person.01143414205.17
161 rdf:rest Nf8dd9bfcc716428a8e329d7af1219bdd
162 N570521a85bd042c8a8369fdbb5ef300f schema:volumeNumber 9
163 rdf:type schema:PublicationVolume
164 N59ebd1022c1d4d9eaba886d1c2cd4b32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Protein Binding
166 rdf:type schema:DefinedTerm
167 N5ad3693361634635b393b53724a053c8 schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 N687c05b6184b4fa9b7febb1d3bef0001 rdf:first sg:person.0623163417.68
170 rdf:rest N3e879ec6ce52416d94c59d7dcc432130
171 N786fcd93701548d38b39506a04c92c4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Binding Sites
173 rdf:type schema:DefinedTerm
174 N9748193e6dbb4851885e0615e1ede5e5 schema:issueNumber Suppl 12
175 rdf:type schema:PublicationIssue
176 N9a76d3e8dba6468e84e4a49d38062e71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Proteins
178 rdf:type schema:DefinedTerm
179 Na438419348a5422a8d9344e0cfad51c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Neural Networks, Computer
181 rdf:type schema:DefinedTerm
182 Na7b64831bb1a452980d23fb63c43da83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Software
184 rdf:type schema:DefinedTerm
185 Naac5a7e75753402ab4da9b3a3545d0dd schema:name pubmed_id
186 schema:value 19091029
187 rdf:type schema:PropertyValue
188 Nafaf53f4c170487cac5bd2ef7bfbcff7 schema:name dimensions_id
189 schema:value pub.1043299234
190 rdf:type schema:PropertyValue
191 Nc09fe76758304bf4969620bf0a9f0983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Reproducibility of Results
193 rdf:type schema:DefinedTerm
194 Nd0be307b38b243e598b7044eba8959f7 rdf:first sg:person.0750360063.66
195 rdf:rest rdf:nil
196 Nd46ec5e293d449078924d95f09e29749 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Algorithms
198 rdf:type schema:DefinedTerm
199 Ne4a0c163d7a7468b9fa79a44bd9b9c36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name DNA
201 rdf:type schema:DefinedTerm
202 Nf376ba196754494ca73c9d593327f883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Computational Biology
204 rdf:type schema:DefinedTerm
205 Nf8dd9bfcc716428a8e329d7af1219bdd rdf:first sg:person.01364151270.35
206 rdf:rest N00c3eab2f56649bea4d11d47503a9341
207 Nfa2af16077054787b12f4a80065a2f5b schema:name doi
208 schema:value 10.1186/1471-2105-9-s12-s6
209 rdf:type schema:PropertyValue
210 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
211 schema:name Biological Sciences
212 rdf:type schema:DefinedTerm
213 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
214 schema:name Biochemistry and Cell Biology
215 rdf:type schema:DefinedTerm
216 sg:journal.1023786 schema:issn 1471-2105
217 schema:name BMC Bioinformatics
218 schema:publisher Springer Nature
219 rdf:type schema:Periodical
220 sg:person.01005525217.26 schema:affiliation grid-institutes:grid.28665.3f
221 schema:familyName Sung
222 schema:givenName Ting-Yi
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005525217.26
224 rdf:type schema:Person
225 sg:person.01143414205.17 schema:affiliation grid-institutes:grid.28665.3f
226 schema:familyName Su
227 schema:givenName Emily Chia-Yu
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143414205.17
229 rdf:type schema:Person
230 sg:person.01364151270.35 schema:affiliation grid-institutes:grid.260539.b
231 schema:familyName Hwang
232 schema:givenName Jenn-Kang
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35
234 rdf:type schema:Person
235 sg:person.0623163417.68 schema:affiliation grid-institutes:grid.28665.3f
236 schema:familyName Cheng
237 schema:givenName Cheng-Wei
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623163417.68
239 rdf:type schema:Person
240 sg:person.0750360063.66 schema:affiliation grid-institutes:grid.28665.3f
241 schema:familyName Hsu
242 schema:givenName Wen-Lian
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750360063.66
244 rdf:type schema:Person
245 sg:pub.10.1007/11732488_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014576053
246 https://doi.org/10.1007/11732488_11
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
249 https://doi.org/10.1007/978-1-4757-2440-0
250 rdf:type schema:CreativeWork
251 sg:pub.10.1186/1471-2105-4-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038813802
252 https://doi.org/10.1186/1471-2105-4-28
253 rdf:type schema:CreativeWork
254 sg:pub.10.1186/1471-2105-8-330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005996969
255 https://doi.org/10.1186/1471-2105-8-330
256 rdf:type schema:CreativeWork
257 grid-institutes:grid.260539.b schema:alternateName Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan
258 schema:name Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan
259 rdf:type schema:Organization
260 grid-institutes:grid.28665.3f schema:alternateName Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan
261 schema:name Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan
262 Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
263 Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan
264 Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...