Ontology type: schema:ScholarlyArticle Open Access: True
2008-12-12
AUTHORSCheng-Wei Cheng, Emily Chia-Yu Su, Jenn-Kang Hwang, Ting-Yi Sung, Wen-Lian Hsu
ABSTRACTBackgroundRNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities.ResultsWe propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed.ConclusionOur results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites. More... »
PAGESs6
http://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6
DOIhttp://dx.doi.org/10.1186/1471-2105-9-s12-s6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1043299234
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/19091029
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Amino Acids",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Artificial Intelligence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Binding Sites",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computational Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "DNA",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Evolution, Molecular",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neural Networks, Computer",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Protein Binding",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "RNA",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reproducibility of Results",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Software",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan",
"id": "http://www.grid.ac/institutes/grid.28665.3f",
"name": [
"Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan",
"Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
],
"type": "Organization"
},
"familyName": "Cheng",
"givenName": "Cheng-Wei",
"id": "sg:person.0623163417.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623163417.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan",
"id": "http://www.grid.ac/institutes/grid.28665.3f",
"name": [
"Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan",
"Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan",
"Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
],
"type": "Organization"
},
"familyName": "Su",
"givenName": "Emily Chia-Yu",
"id": "sg:person.01143414205.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143414205.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan",
"id": "http://www.grid.ac/institutes/grid.260539.b",
"name": [
"Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan"
],
"type": "Organization"
},
"familyName": "Hwang",
"givenName": "Jenn-Kang",
"id": "sg:person.01364151270.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan",
"id": "http://www.grid.ac/institutes/grid.28665.3f",
"name": [
"Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
],
"type": "Organization"
},
"familyName": "Sung",
"givenName": "Ting-Yi",
"id": "sg:person.01005525217.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005525217.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan",
"id": "http://www.grid.ac/institutes/grid.28665.3f",
"name": [
"Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan",
"Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan"
],
"type": "Organization"
},
"familyName": "Hsu",
"givenName": "Wen-Lian",
"id": "sg:person.0750360063.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750360063.66"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4757-2440-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027312764",
"https://doi.org/10.1007/978-1-4757-2440-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-8-330",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005996969",
"https://doi.org/10.1186/1471-2105-8-330"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11732488_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014576053",
"https://doi.org/10.1007/11732488_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-4-28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038813802",
"https://doi.org/10.1186/1471-2105-4-28"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-12-12",
"datePublishedReg": "2008-12-12",
"description": "BackgroundRNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities.ResultsWe propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed.ConclusionOur results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites.",
"genre": "article",
"id": "sg:pub.10.1186/1471-2105-9-s12-s6",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1023786",
"issn": [
"1471-2105"
],
"name": "BMC Bioinformatics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "Suppl 12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"keywords": [
"position-specific scoring matrix",
"evolutionary information",
"site prediction",
"RNA-protein interactions",
"DNA-binding site prediction",
"protein-protein interactions",
"identification of RNA",
"posttranslational modification sites",
"non-interacting residues",
"amino acid preferences",
"prediction of RNA",
"sites of proteins",
"posttranscriptional regulation",
"performance of RNA",
"Predicting RNA",
"gene expression",
"biological processes",
"modification sites",
"protein synthesis",
"RNA",
"PSSM profiles",
"amino acids",
"neighboring residues",
"protein",
"essential role",
"scoring matrix",
"residues",
"computational approach",
"viral infectivity",
"sites",
"Matthews correlation coefficient",
"biologists",
"high specificity",
"valuable insights",
"interaction",
"regulation",
"extensive study",
"specificity",
"expression",
"infectivity",
"identification",
"acid",
"insights",
"role",
"ConclusionOur results",
"data sets",
"synthesis",
"sensitivity",
"development",
"incorporation",
"prediction",
"preferences",
"profile",
"information",
"physicochemical properties",
"research area",
"results",
"ResultsWe",
"process",
"support vector machine model",
"study",
"approach",
"matrix",
"data",
"area",
"prediction performance",
"set",
"low sensitivity",
"correlation",
"determination",
"system",
"dependency",
"method",
"state",
"vector machine model",
"model",
"properties",
"correlation coefficient",
"benchmark data sets",
"experimental determination",
"support vector machine",
"terms",
"split procedure",
"assumption",
"overall accuracy",
"vector machine",
"procedure",
"ambiguity",
"performance",
"coefficient",
"machine",
"scheme",
"accuracy",
"machine model",
"fitting",
"experimental results",
"art systems"
],
"name": "Predicting RNA-binding sites of proteins using support vector machines and evolutionary information",
"pagination": "s6",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1043299234"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1471-2105-9-s12-s6"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"19091029"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1471-2105-9-s12-s6",
"https://app.dimensions.ai/details/publication/pub.1043299234"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_473.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/1471-2105-9-s12-s6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s6'
This table displays all metadata directly associated to this object as RDF triples.
260 TRIPLES
22 PREDICATES
140 URIs
128 LITERALS
20 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/1471-2105-9-s12-s6 | schema:about | N13e575a8c2db4f33b18d48fdab2c47c7 |
2 | ″ | ″ | N32745ee6f6444f19ad8e22e4880e62bf |
3 | ″ | ″ | N37b457075005422fa2a3270bda4cb719 |
4 | ″ | ″ | N56a9d862b0d542f984f1945e5834cac2 |
5 | ″ | ″ | N682dc18a2fff497ca372b321e62a4e44 |
6 | ″ | ″ | N6d16366797fc49ebab8d258682f796bc |
7 | ″ | ″ | N720606741d2344ffb0ac946f9d25be42 |
8 | ″ | ″ | N8b4ffd593b2341b98ec188867243b251 |
9 | ″ | ″ | N9d61a981b6a248f6a5ae1186ee0f1f32 |
10 | ″ | ″ | Nb313eaeaacf841d7b57b0445f99256a7 |
11 | ″ | ″ | Ndd5c3317e6a244318cfdc48d1b8836af |
12 | ″ | ″ | Ndf3f2214883f4072a099bcdc3f40f236 |
13 | ″ | ″ | Nfb20ec53385e4c53af17f33a16064bd7 |
14 | ″ | ″ | anzsrc-for:06 |
15 | ″ | ″ | anzsrc-for:0601 |
16 | ″ | schema:author | N583d36cd96f0437db6ef3797884478a5 |
17 | ″ | schema:citation | sg:pub.10.1007/11732488_11 |
18 | ″ | ″ | sg:pub.10.1007/978-1-4757-2440-0 |
19 | ″ | ″ | sg:pub.10.1186/1471-2105-4-28 |
20 | ″ | ″ | sg:pub.10.1186/1471-2105-8-330 |
21 | ″ | schema:datePublished | 2008-12-12 |
22 | ″ | schema:datePublishedReg | 2008-12-12 |
23 | ″ | schema:description | BackgroundRNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities.ResultsWe propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed.ConclusionOur results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding site prediction in proteins. This also supports our assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating between interacting and non-interacting residues by modelling the dependency from surrounding residues. The proposed method can be used in other research areas, such as DNA-binding site prediction, protein-protein interaction, and prediction of posttranslational modification sites. |
24 | ″ | schema:genre | article |
25 | ″ | schema:inLanguage | en |
26 | ″ | schema:isAccessibleForFree | true |
27 | ″ | schema:isPartOf | N08b401d0962a46bf83fd79ffb384a5a0 |
28 | ″ | ″ | N61c36bda34174ea3889d6a437216893a |
29 | ″ | ″ | sg:journal.1023786 |
30 | ″ | schema:keywords | ConclusionOur results |
31 | ″ | ″ | DNA-binding site prediction |
32 | ″ | ″ | Matthews correlation coefficient |
33 | ″ | ″ | PSSM profiles |
34 | ″ | ″ | Predicting RNA |
35 | ″ | ″ | RNA |
36 | ″ | ″ | RNA-protein interactions |
37 | ″ | ″ | ResultsWe |
38 | ″ | ″ | accuracy |
39 | ″ | ″ | acid |
40 | ″ | ″ | ambiguity |
41 | ″ | ″ | amino acid preferences |
42 | ″ | ″ | amino acids |
43 | ″ | ″ | approach |
44 | ″ | ″ | area |
45 | ″ | ″ | art systems |
46 | ″ | ″ | assumption |
47 | ″ | ″ | benchmark data sets |
48 | ″ | ″ | biological processes |
49 | ″ | ″ | biologists |
50 | ″ | ″ | coefficient |
51 | ″ | ″ | computational approach |
52 | ″ | ″ | correlation |
53 | ″ | ″ | correlation coefficient |
54 | ″ | ″ | data |
55 | ″ | ″ | data sets |
56 | ″ | ″ | dependency |
57 | ″ | ″ | determination |
58 | ″ | ″ | development |
59 | ″ | ″ | essential role |
60 | ″ | ″ | evolutionary information |
61 | ″ | ″ | experimental determination |
62 | ″ | ″ | experimental results |
63 | ″ | ″ | expression |
64 | ″ | ″ | extensive study |
65 | ″ | ″ | fitting |
66 | ″ | ″ | gene expression |
67 | ″ | ″ | high specificity |
68 | ″ | ″ | identification |
69 | ″ | ″ | identification of RNA |
70 | ″ | ″ | incorporation |
71 | ″ | ″ | infectivity |
72 | ″ | ″ | information |
73 | ″ | ″ | insights |
74 | ″ | ″ | interaction |
75 | ″ | ″ | low sensitivity |
76 | ″ | ″ | machine |
77 | ″ | ″ | machine model |
78 | ″ | ″ | matrix |
79 | ″ | ″ | method |
80 | ″ | ″ | model |
81 | ″ | ″ | modification sites |
82 | ″ | ″ | neighboring residues |
83 | ″ | ″ | non-interacting residues |
84 | ″ | ″ | overall accuracy |
85 | ″ | ″ | performance |
86 | ″ | ″ | performance of RNA |
87 | ″ | ″ | physicochemical properties |
88 | ″ | ″ | position-specific scoring matrix |
89 | ″ | ″ | posttranscriptional regulation |
90 | ″ | ″ | posttranslational modification sites |
91 | ″ | ″ | prediction |
92 | ″ | ″ | prediction of RNA |
93 | ″ | ″ | prediction performance |
94 | ″ | ″ | preferences |
95 | ″ | ″ | procedure |
96 | ″ | ″ | process |
97 | ″ | ″ | profile |
98 | ″ | ″ | properties |
99 | ″ | ″ | protein |
100 | ″ | ″ | protein synthesis |
101 | ″ | ″ | protein-protein interactions |
102 | ″ | ″ | regulation |
103 | ″ | ″ | research area |
104 | ″ | ″ | residues |
105 | ″ | ″ | results |
106 | ″ | ″ | role |
107 | ″ | ″ | scheme |
108 | ″ | ″ | scoring matrix |
109 | ″ | ″ | sensitivity |
110 | ″ | ″ | set |
111 | ″ | ″ | site prediction |
112 | ″ | ″ | sites |
113 | ″ | ″ | sites of proteins |
114 | ″ | ″ | specificity |
115 | ″ | ″ | split procedure |
116 | ″ | ″ | state |
117 | ″ | ″ | study |
118 | ″ | ″ | support vector machine |
119 | ″ | ″ | support vector machine model |
120 | ″ | ″ | synthesis |
121 | ″ | ″ | system |
122 | ″ | ″ | terms |
123 | ″ | ″ | valuable insights |
124 | ″ | ″ | vector machine |
125 | ″ | ″ | vector machine model |
126 | ″ | ″ | viral infectivity |
127 | ″ | schema:name | Predicting RNA-binding sites of proteins using support vector machines and evolutionary information |
128 | ″ | schema:pagination | s6 |
129 | ″ | schema:productId | N444c106c63b54266809dc04e6b797d94 |
130 | ″ | ″ | N495dadee8e5a4f70bd9c80b2bfbdb390 |
131 | ″ | ″ | Nc22ad666c36645d8b715c14c90929ea4 |
132 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043299234 |
133 | ″ | ″ | https://doi.org/10.1186/1471-2105-9-s12-s6 |
134 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
135 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
136 | ″ | schema:sdPublisher | N00e51d32de934870a38aa000b418d215 |
137 | ″ | schema:url | https://doi.org/10.1186/1471-2105-9-s12-s6 |
138 | ″ | sgo:license | sg:explorer/license/ |
139 | ″ | sgo:sdDataset | articles |
140 | ″ | rdf:type | schema:ScholarlyArticle |
141 | N00e51d32de934870a38aa000b418d215 | schema:name | Springer Nature - SN SciGraph project |
142 | ″ | rdf:type | schema:Organization |
143 | N08b401d0962a46bf83fd79ffb384a5a0 | schema:volumeNumber | 9 |
144 | ″ | rdf:type | schema:PublicationVolume |
145 | N13e575a8c2db4f33b18d48fdab2c47c7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
146 | ″ | schema:name | Neural Networks, Computer |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | N32745ee6f6444f19ad8e22e4880e62bf | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
149 | ″ | schema:name | DNA |
150 | ″ | rdf:type | schema:DefinedTerm |
151 | N34c5d8c62e61419a95c7fc23b7ce5f9d | rdf:first | sg:person.01005525217.26 |
152 | ″ | rdf:rest | Nce7a417c76e849869aecacafd4552acc |
153 | N37b457075005422fa2a3270bda4cb719 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
154 | ″ | schema:name | Evolution, Molecular |
155 | ″ | rdf:type | schema:DefinedTerm |
156 | N444c106c63b54266809dc04e6b797d94 | schema:name | pubmed_id |
157 | ″ | schema:value | 19091029 |
158 | ″ | rdf:type | schema:PropertyValue |
159 | N495dadee8e5a4f70bd9c80b2bfbdb390 | schema:name | dimensions_id |
160 | ″ | schema:value | pub.1043299234 |
161 | ″ | rdf:type | schema:PropertyValue |
162 | N568cb763bca94c9c88fc8b528d2dd203 | rdf:first | sg:person.01364151270.35 |
163 | ″ | rdf:rest | N34c5d8c62e61419a95c7fc23b7ce5f9d |
164 | N56a9d862b0d542f984f1945e5834cac2 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
165 | ″ | schema:name | Artificial Intelligence |
166 | ″ | rdf:type | schema:DefinedTerm |
167 | N583d36cd96f0437db6ef3797884478a5 | rdf:first | sg:person.0623163417.68 |
168 | ″ | rdf:rest | Ne6ccbca0ef53437db5186815c991e42c |
169 | N61c36bda34174ea3889d6a437216893a | schema:issueNumber | Suppl 12 |
170 | ″ | rdf:type | schema:PublicationIssue |
171 | N682dc18a2fff497ca372b321e62a4e44 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
172 | ″ | schema:name | Reproducibility of Results |
173 | ″ | rdf:type | schema:DefinedTerm |
174 | N6d16366797fc49ebab8d258682f796bc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
175 | ″ | schema:name | RNA |
176 | ″ | rdf:type | schema:DefinedTerm |
177 | N720606741d2344ffb0ac946f9d25be42 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
178 | ″ | schema:name | Protein Binding |
179 | ″ | rdf:type | schema:DefinedTerm |
180 | N8b4ffd593b2341b98ec188867243b251 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
181 | ″ | schema:name | Amino Acids |
182 | ″ | rdf:type | schema:DefinedTerm |
183 | N9d61a981b6a248f6a5ae1186ee0f1f32 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
184 | ″ | schema:name | Proteins |
185 | ″ | rdf:type | schema:DefinedTerm |
186 | Nb313eaeaacf841d7b57b0445f99256a7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
187 | ″ | schema:name | Algorithms |
188 | ″ | rdf:type | schema:DefinedTerm |
189 | Nc22ad666c36645d8b715c14c90929ea4 | schema:name | doi |
190 | ″ | schema:value | 10.1186/1471-2105-9-s12-s6 |
191 | ″ | rdf:type | schema:PropertyValue |
192 | Nce7a417c76e849869aecacafd4552acc | rdf:first | sg:person.0750360063.66 |
193 | ″ | rdf:rest | rdf:nil |
194 | Ndd5c3317e6a244318cfdc48d1b8836af | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
195 | ″ | schema:name | Software |
196 | ″ | rdf:type | schema:DefinedTerm |
197 | Ndf3f2214883f4072a099bcdc3f40f236 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
198 | ″ | schema:name | Computational Biology |
199 | ″ | rdf:type | schema:DefinedTerm |
200 | Ne6ccbca0ef53437db5186815c991e42c | rdf:first | sg:person.01143414205.17 |
201 | ″ | rdf:rest | N568cb763bca94c9c88fc8b528d2dd203 |
202 | Nfb20ec53385e4c53af17f33a16064bd7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
203 | ″ | schema:name | Binding Sites |
204 | ″ | rdf:type | schema:DefinedTerm |
205 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
206 | ″ | schema:name | Biological Sciences |
207 | ″ | rdf:type | schema:DefinedTerm |
208 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
209 | ″ | schema:name | Biochemistry and Cell Biology |
210 | ″ | rdf:type | schema:DefinedTerm |
211 | sg:journal.1023786 | schema:issn | 1471-2105 |
212 | ″ | schema:name | BMC Bioinformatics |
213 | ″ | schema:publisher | Springer Nature |
214 | ″ | rdf:type | schema:Periodical |
215 | sg:person.01005525217.26 | schema:affiliation | grid-institutes:grid.28665.3f |
216 | ″ | schema:familyName | Sung |
217 | ″ | schema:givenName | Ting-Yi |
218 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005525217.26 |
219 | ″ | rdf:type | schema:Person |
220 | sg:person.01143414205.17 | schema:affiliation | grid-institutes:grid.28665.3f |
221 | ″ | schema:familyName | Su |
222 | ″ | schema:givenName | Emily Chia-Yu |
223 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143414205.17 |
224 | ″ | rdf:type | schema:Person |
225 | sg:person.01364151270.35 | schema:affiliation | grid-institutes:grid.260539.b |
226 | ″ | schema:familyName | Hwang |
227 | ″ | schema:givenName | Jenn-Kang |
228 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35 |
229 | ″ | rdf:type | schema:Person |
230 | sg:person.0623163417.68 | schema:affiliation | grid-institutes:grid.28665.3f |
231 | ″ | schema:familyName | Cheng |
232 | ″ | schema:givenName | Cheng-Wei |
233 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623163417.68 |
234 | ″ | rdf:type | schema:Person |
235 | sg:person.0750360063.66 | schema:affiliation | grid-institutes:grid.28665.3f |
236 | ″ | schema:familyName | Hsu |
237 | ″ | schema:givenName | Wen-Lian |
238 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750360063.66 |
239 | ″ | rdf:type | schema:Person |
240 | sg:pub.10.1007/11732488_11 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014576053 |
241 | ″ | ″ | https://doi.org/10.1007/11732488_11 |
242 | ″ | rdf:type | schema:CreativeWork |
243 | sg:pub.10.1007/978-1-4757-2440-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027312764 |
244 | ″ | ″ | https://doi.org/10.1007/978-1-4757-2440-0 |
245 | ″ | rdf:type | schema:CreativeWork |
246 | sg:pub.10.1186/1471-2105-4-28 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038813802 |
247 | ″ | ″ | https://doi.org/10.1186/1471-2105-4-28 |
248 | ″ | rdf:type | schema:CreativeWork |
249 | sg:pub.10.1186/1471-2105-8-330 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005996969 |
250 | ″ | ″ | https://doi.org/10.1186/1471-2105-8-330 |
251 | ″ | rdf:type | schema:CreativeWork |
252 | grid-institutes:grid.260539.b | schema:alternateName | Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan |
253 | ″ | schema:name | Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan |
254 | ″ | rdf:type | schema:Organization |
255 | grid-institutes:grid.28665.3f | schema:alternateName | Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan |
256 | ″ | schema:name | Bioinformatics Lab., Institute of Information Science, Academia Sinica, Taipei, Taiwan |
257 | ″ | ″ | Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan |
258 | ″ | ″ | Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan |
259 | ″ | ″ | Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan |
260 | ″ | rdf:type | schema:Organization |