Dynamic sensitivity analysis of biological systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-12

AUTHORS

Wu Hsiung Wu, Feng Sheng Wang, Maw Shang Chang

ABSTRACT

BACKGROUND: A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. RESULTS: We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time-dependent admissible input. CONCLUSION: By combining the accuracy we show with the efficiency of being a decouple direct method, our algorithm is an excellent method for computing dynamic parameter sensitivities in stiff problems. We extend the scope of classical dynamic sensitivity analysis to the investigation of dynamic log gains of models with time-dependent admissible input. More... »

PAGES

s17-s17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s17

DOI

http://dx.doi.org/10.1186/1471-2105-9-s12-s17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034971381

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19091016


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ethane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ethanol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fermentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Formaldehyde", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Theory", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wu Hsiung", 
        "id": "sg:person.0710177757.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710177757.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Feng Sheng", 
        "id": "sg:person.011660076724.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660076724.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Maw Shang", 
        "id": "sg:person.013174232477.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174232477.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/229542a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036781265", 
          "https://doi.org/10.1038/229542a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1161-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014027374", 
          "https://doi.org/10.1007/978-1-4613-1161-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-12", 
    "datePublishedReg": "2008-12-12", 
    "description": "BACKGROUND: A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains.\nRESULTS: We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time-dependent admissible input.\nCONCLUSION: By combining the accuracy we show with the efficiency of being a decouple direct method, our algorithm is an excellent method for computing dynamic parameter sensitivities in stiff problems. We extend the scope of classical dynamic sensitivity analysis to the investigation of dynamic log gains of models with time-dependent admissible input.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-9-s12-s17", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "dynamic sensitivity analysis", 
      "ODE system", 
      "admissible inputs", 
      "nonlinear ordinary differential equations system", 
      "parameter sensitivity", 
      "ordinary differential equation system", 
      "model equations", 
      "stiff ODE systems", 
      "differential equation system", 
      "adaptive step size control", 
      "direct method", 
      "autonomous ODE system", 
      "step size control", 
      "time-dependent inputs", 
      "infinite dimensions", 
      "stiff problems", 
      "sensitivity equations", 
      "stiff integrator", 
      "equation system", 
      "mathematical model", 
      "real biological systems", 
      "sensitivity analysis", 
      "dynamic biological systems", 
      "step size", 
      "fed-batch fermentation system", 
      "equations", 
      "biological systems", 
      "realistic model", 
      "dynamic sensitivity", 
      "main difficulty", 
      "new algorithm", 
      "log gain", 
      "algorithm", 
      "pyrolysis of ethane", 
      "systems biology", 
      "dynamic behavior", 
      "practical applications", 
      "ODEs", 
      "accuracy", 
      "model", 
      "computation", 
      "moderate accuracy", 
      "input", 
      "indirect method", 
      "system", 
      "integrator", 
      "chemical reactions", 
      "time profiles", 
      "problem", 
      "solution", 
      "size control", 
      "critical job", 
      "applicability", 
      "set", 
      "gain", 
      "dimensions", 
      "account", 
      "applications", 
      "analysis", 
      "feed rate", 
      "control", 
      "efficiency", 
      "cases", 
      "behavior", 
      "fermentation system", 
      "size", 
      "difficulties", 
      "central theme", 
      "excellent method", 
      "sensitivity", 
      "profile", 
      "jobs", 
      "investigation", 
      "scope", 
      "biology", 
      "rate", 
      "ethane", 
      "pyrolysis", 
      "reaction", 
      "themes", 
      "oxidation", 
      "formaldehyde", 
      "oxidation of formaldehyde", 
      "method", 
      "dynamic parameter sensitivities", 
      "system admissible input", 
      "dynamic log gains", 
      "classical dynamic sensitivity analysis", 
      "decouple direct methods", 
      "Rosenbrock stiff integrator", 
      "same dynamic sensitivity analysis", 
      "ethanol fed-batch fermentation system", 
      "time-varying feed rate", 
      "time-dependent admissible input"
    ], 
    "name": "Dynamic sensitivity analysis of biological systems", 
    "pagination": "s17-s17", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034971381"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-s12-s17"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19091016"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-s12-s17", 
      "https://app.dimensions.ai/details/publication/pub.1034971381"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_476.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-9-s12-s17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-s12-s17'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      22 PREDICATES      136 URIs      126 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-s12-s17 schema:about N1c1e8bd3e08545c58a36be7d6b560575
2 N37bce35588044151981d979901eb1dab
3 N64ed416b17ee4681b5f2cc388e65f552
4 N78fe4f55620c47b6b54ca365a9eb1297
5 N7f9e8561f9f14763966721d9071ac6b0
6 N8c27b86180bb402f86c1e3b28bb783cb
7 N91641e0e61dc47d4bc0628072bb3e67b
8 Nbebac1b434c247789d2c61053ad65101
9 Nc09d99f2185647f78fffe8802f315e82
10 Nc16d0f972a62406bbb76a1e15f03eb04
11 Ne17b7beae8f0481180cc8b2b79c1ee7f
12 Ne6c5009f9c1e45fb8b4c6dc27f256657
13 Ne8140f16a9474ef9bbe53de4eb666f01
14 Neadfb4bcbf2d4bc89634f9834efd131d
15 anzsrc-for:01
16 anzsrc-for:0102
17 schema:author Ndb690c9d082e4c7982874bbd3956d9bb
18 schema:citation sg:pub.10.1007/978-1-4613-1161-4
19 sg:pub.10.1038/229542a0
20 schema:datePublished 2008-12-12
21 schema:datePublishedReg 2008-12-12
22 schema:description BACKGROUND: A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. RESULTS: We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time-dependent admissible input. CONCLUSION: By combining the accuracy we show with the efficiency of being a decouple direct method, our algorithm is an excellent method for computing dynamic parameter sensitivities in stiff problems. We extend the scope of classical dynamic sensitivity analysis to the investigation of dynamic log gains of models with time-dependent admissible input.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N186871f1f3b14cb9865b5177e6f161c8
27 N1b35a9ea34d947b3b19bf32cca769395
28 sg:journal.1023786
29 schema:keywords ODE system
30 ODEs
31 Rosenbrock stiff integrator
32 account
33 accuracy
34 adaptive step size control
35 admissible inputs
36 algorithm
37 analysis
38 applicability
39 applications
40 autonomous ODE system
41 behavior
42 biological systems
43 biology
44 cases
45 central theme
46 chemical reactions
47 classical dynamic sensitivity analysis
48 computation
49 control
50 critical job
51 decouple direct methods
52 differential equation system
53 difficulties
54 dimensions
55 direct method
56 dynamic behavior
57 dynamic biological systems
58 dynamic log gains
59 dynamic parameter sensitivities
60 dynamic sensitivity
61 dynamic sensitivity analysis
62 efficiency
63 equation system
64 equations
65 ethane
66 ethanol fed-batch fermentation system
67 excellent method
68 fed-batch fermentation system
69 feed rate
70 fermentation system
71 formaldehyde
72 gain
73 indirect method
74 infinite dimensions
75 input
76 integrator
77 investigation
78 jobs
79 log gain
80 main difficulty
81 mathematical model
82 method
83 model
84 model equations
85 moderate accuracy
86 new algorithm
87 nonlinear ordinary differential equations system
88 ordinary differential equation system
89 oxidation
90 oxidation of formaldehyde
91 parameter sensitivity
92 practical applications
93 problem
94 profile
95 pyrolysis
96 pyrolysis of ethane
97 rate
98 reaction
99 real biological systems
100 realistic model
101 same dynamic sensitivity analysis
102 scope
103 sensitivity
104 sensitivity analysis
105 sensitivity equations
106 set
107 size
108 size control
109 solution
110 step size
111 step size control
112 stiff ODE systems
113 stiff integrator
114 stiff problems
115 system
116 system admissible input
117 systems biology
118 themes
119 time profiles
120 time-dependent admissible input
121 time-dependent inputs
122 time-varying feed rate
123 schema:name Dynamic sensitivity analysis of biological systems
124 schema:pagination s17-s17
125 schema:productId N1b00811b9aad45428f7a02b0b97b99ab
126 N3f305f8775e9425aa477254050dae220
127 N4ed5ed9f73c443b48233a5c715c7e6f1
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034971381
129 https://doi.org/10.1186/1471-2105-9-s12-s17
130 schema:sdDatePublished 2021-11-01T18:12
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher N1f16b904a196472c86945293198504c3
133 schema:url https://doi.org/10.1186/1471-2105-9-s12-s17
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N186871f1f3b14cb9865b5177e6f161c8 schema:issueNumber Suppl 12
138 rdf:type schema:PublicationIssue
139 N1b00811b9aad45428f7a02b0b97b99ab schema:name doi
140 schema:value 10.1186/1471-2105-9-s12-s17
141 rdf:type schema:PropertyValue
142 N1b35a9ea34d947b3b19bf32cca769395 schema:volumeNumber 9
143 rdf:type schema:PublicationVolume
144 N1c1e8bd3e08545c58a36be7d6b560575 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Systems Biology
146 rdf:type schema:DefinedTerm
147 N1f16b904a196472c86945293198504c3 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 N37bce35588044151981d979901eb1dab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Saccharomyces
151 rdf:type schema:DefinedTerm
152 N3f305f8775e9425aa477254050dae220 schema:name pubmed_id
153 schema:value 19091016
154 rdf:type schema:PropertyValue
155 N4766a36e422841c2b1f62a482056d3cd rdf:first sg:person.013174232477.45
156 rdf:rest rdf:nil
157 N4ed5ed9f73c443b48233a5c715c7e6f1 schema:name dimensions_id
158 schema:value pub.1034971381
159 rdf:type schema:PropertyValue
160 N64ed416b17ee4681b5f2cc388e65f552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Fermentation
162 rdf:type schema:DefinedTerm
163 N78fe4f55620c47b6b54ca365a9eb1297 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Systems Theory
165 rdf:type schema:DefinedTerm
166 N7f9e8561f9f14763966721d9071ac6b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Computational Biology
168 rdf:type schema:DefinedTerm
169 N8c27b86180bb402f86c1e3b28bb783cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Computer Simulation
171 rdf:type schema:DefinedTerm
172 N91641e0e61dc47d4bc0628072bb3e67b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Reproducibility of Results
174 rdf:type schema:DefinedTerm
175 Nbcf7136ca1894046829700b829b61203 rdf:first sg:person.011660076724.07
176 rdf:rest N4766a36e422841c2b1f62a482056d3cd
177 Nbebac1b434c247789d2c61053ad65101 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Models, Biological
179 rdf:type schema:DefinedTerm
180 Nc09d99f2185647f78fffe8802f315e82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Formaldehyde
182 rdf:type schema:DefinedTerm
183 Nc16d0f972a62406bbb76a1e15f03eb04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Ethanol
185 rdf:type schema:DefinedTerm
186 Ndb690c9d082e4c7982874bbd3956d9bb rdf:first sg:person.0710177757.90
187 rdf:rest Nbcf7136ca1894046829700b829b61203
188 Ne17b7beae8f0481180cc8b2b79c1ee7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Ethane
190 rdf:type schema:DefinedTerm
191 Ne6c5009f9c1e45fb8b4c6dc27f256657 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Algorithms
193 rdf:type schema:DefinedTerm
194 Ne8140f16a9474ef9bbe53de4eb666f01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Models, Theoretical
196 rdf:type schema:DefinedTerm
197 Neadfb4bcbf2d4bc89634f9834efd131d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Sensitivity and Specificity
199 rdf:type schema:DefinedTerm
200 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
201 schema:name Mathematical Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
204 schema:name Applied Mathematics
205 rdf:type schema:DefinedTerm
206 sg:journal.1023786 schema:issn 1471-2105
207 schema:name BMC Bioinformatics
208 schema:publisher Springer Nature
209 rdf:type schema:Periodical
210 sg:person.011660076724.07 schema:affiliation grid-institutes:grid.412047.4
211 schema:familyName Wang
212 schema:givenName Feng Sheng
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660076724.07
214 rdf:type schema:Person
215 sg:person.013174232477.45 schema:affiliation grid-institutes:grid.412047.4
216 schema:familyName Chang
217 schema:givenName Maw Shang
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174232477.45
219 rdf:type schema:Person
220 sg:person.0710177757.90 schema:affiliation grid-institutes:grid.412047.4
221 schema:familyName Wu
222 schema:givenName Wu Hsiung
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710177757.90
224 rdf:type schema:Person
225 sg:pub.10.1007/978-1-4613-1161-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014027374
226 https://doi.org/10.1007/978-1-4613-1161-4
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/229542a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036781265
229 https://doi.org/10.1038/229542a0
230 rdf:type schema:CreativeWork
231 grid-institutes:grid.412047.4 schema:alternateName Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
232 Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
233 schema:name Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
234 Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...