WGCNA: an R package for weighted correlation network analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-29

AUTHORS

Peter Langfelder, Steve Horvath

ABSTRACT

BackgroundCorrelation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial.ResultsThe WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings.ConclusionThe WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA. More... »

PAGES

559

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2003-04-03. DAVID: Database for Annotation, Visualization, and Integrated Discovery in GENOME BIOLOGY
  • 2006-03-03. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks in BMC GENOMICS
  • 2008-11-06. Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome in BMC SYSTEMS BIOLOGY
  • 2007-06-04. Understanding network concepts in modules in BMC SYSTEMS BIOLOGY
  • 2007-07-01. Weighted gene coexpression network analysis strategies applied to mouse weight in MAMMALIAN GENOME
  • 2006-08-16. Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae in BMC BIOINFORMATICS
  • 2002-06-25. A prediction-based resampling method for estimating the number of clusters in a dataset in GENOME BIOLOGY
  • 2002-11-01. Automated modelling of signal transduction networks in BMC BIOINFORMATICS
  • 2008-02-04. Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants in BMC SYSTEMS BIOLOGY
  • 2007-05-22. GOSim – an R-package for computation of information theoretic GO similarities between terms and gene products in BMC BIOINFORMATICS
  • 2008-10-12. Functional organization of the transcriptome in human brain in NATURE NEUROSCIENCE
  • 2007-11-21. Eigengene networks for studying the relationships between co-expression modules in BMC SYSTEMS BIOLOGY
  • 2006. Unsupervised Multiple-Instance Learning for Functional Profiling of Genomic Data in MACHINE LEARNING: ECML 2006
  • 1998-06. Collective dynamics of ‘small-world’ networks in NATURE
  • 2008-04-15. Using genetic markers to orient the edges in quantitative trait networks: The NEO software in BMC SYSTEMS BIOLOGY
  • 2007-08-06. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data in BMC SYSTEMS BIOLOGY
  • 2005. Bioinformatics and Computational Biology Solutions Using R and Bioconductor in NONE
  • 2008-03-16. Genetics of gene expression and its effect on disease in NATURE
  • 2007-01-24. Gene network interconnectedness and the generalized topological overlap measure in BMC BIOINFORMATICS
  • Journal

    TITLE

    BMC Bioinformatics

    ISSUE

    1

    VOLUME

    9

    Related Patents

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-9-559

    DOI

    http://dx.doi.org/10.1186/1471-2105-9-559

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020312314

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19114008


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Graphics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computing Methodologies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Programming Languages", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Systems Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Human Genetics, University of California, 90095, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Human Genetics, University of California, 90095, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Langfelder", 
            "givenName": "Peter", 
            "id": "sg:person.01021573403.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021573403.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Human Genetics and Department of Biostatistics, University of California, 90095, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Human Genetics and Department of Biostatistics, University of California, 90095, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Horvath", 
            "givenName": "Steve", 
            "id": "sg:person.015714446737.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714446737.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00335-007-9043-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019846773", 
              "https://doi.org/10.1007/s00335-007-9043-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-1-54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052159443", 
              "https://doi.org/10.1186/1752-0509-1-54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017575653", 
              "https://doi.org/10.1186/1471-2105-8-22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047969922", 
              "https://doi.org/10.1038/nn.2207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11871842_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008223646", 
              "https://doi.org/10.1007/11871842_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-2-95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043460706", 
              "https://doi.org/10.1186/1752-0509-2-95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029147952", 
              "https://doi.org/10.1186/1471-2105-8-166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-7-40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033355699", 
              "https://doi.org/10.1186/1471-2164-7-40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-29362-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014125606", 
              "https://doi.org/10.1007/0-387-29362-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-5-p3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021292424", 
              "https://doi.org/10.1186/gb-2003-4-5-p3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022504514", 
              "https://doi.org/10.1038/nature06758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049538198", 
              "https://doi.org/10.1186/1471-2105-7-381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-1-37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027188239", 
              "https://doi.org/10.1186/1752-0509-1-37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2002-3-7-research0036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041996792", 
              "https://doi.org/10.1186/gb-2002-3-7-research0036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-3-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030797440", 
              "https://doi.org/10.1186/1471-2105-3-34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-2-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037049388", 
              "https://doi.org/10.1186/1752-0509-2-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-1-24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051873410", 
              "https://doi.org/10.1186/1752-0509-1-24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-2-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005456959", 
              "https://doi.org/10.1186/1752-0509-2-34"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-12-29", 
        "datePublishedReg": "2008-12-29", 
        "description": "BackgroundCorrelation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial.ResultsThe WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings.ConclusionThe WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2105-9-559", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2561190", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2440173", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2438817", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "data mining approach", 
          "R package", 
          "gene screening method", 
          "gene expression data", 
          "bioinformatics applications", 
          "software implementation", 
          "external software", 
          "network analysis", 
          "mining approach", 
          "source code", 
          "software tutorials", 
          "accompanying tutorial", 
          "network methodology", 
          "module detection", 
          "software package", 
          "brain imaging data", 
          "data simulation", 
          "network construction", 
          "expression data", 
          "R software package", 
          "intramodular hub genes", 
          "imaging data", 
          "network", 
          "R function", 
          "sample traits", 
          "tutorial", 
          "gene selection", 
          "package", 
          "biology methods", 
          "comprehensive collection", 
          "yeast genetics", 
          "screening method", 
          "software", 
          "different settings", 
          "topological properties", 
          "systems biology methods", 
          "microarray samples", 
          "such clusters", 
          "visualization", 
          "module", 
          "implementation", 
          "code", 
          "module eigengenes", 
          "data", 
          "method", 
          "clusters", 
          "applications", 
          "detection", 
          "collection", 
          "methodology", 
          "biological context", 
          "materials", 
          "method development", 
          "properties", 
          "correlation patterns", 
          "simulations", 
          "selection", 
          "example", 
          "context", 
          "need", 
          "construction", 
          "genes", 
          "aspects", 
          "analysis", 
          "mouse genetics", 
          "function", 
          "variety", 
          "samples", 
          "development", 
          "part", 
          "separate publication", 
          "setting", 
          "approach", 
          "WGCNA package", 
          "additional material", 
          "publications", 
          "candidate biomarkers", 
          "biomarkers", 
          "eigengenes", 
          "patterns", 
          "measures", 
          "calculations", 
          "target", 
          "correlation network analysis", 
          "genetics", 
          "co-expression network analysis", 
          "gene co-expression network analysis", 
          "cancer", 
          "hub genes", 
          "traits", 
          "therapeutic target"
        ], 
        "name": "WGCNA: an R package for weighted correlation network analysis", 
        "pagination": "559", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020312314"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-9-559"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19114008"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-9-559", 
          "https://app.dimensions.ai/details/publication/pub.1020312314"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_457.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2105-9-559"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-559'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-559'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-559'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-559'


     

    This table displays all metadata directly associated to this object as RDF triples.

    302 TRIPLES      21 PREDICATES      150 URIs      122 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-9-559 schema:about N23a9710e0f55461c9fc29f266b66b3d5
    2 N33f6cba3a9ff4797879540b5d4bf4acb
    3 N37846d76ce0a4f9ba514f9af5c5a1559
    4 N4838d19e5f6746ee811c32ff6dd2fec9
    5 N569cfdb90176422ebf58d3299c4f4ded
    6 N5bcdfb27d6244337b64f657aa6880f45
    7 N70c35b8e900e4975b85b81e19ca1acdd
    8 N8829beaf87504c11aafbe4237221b39c
    9 N8b878bc7c4f5496799c0eaf020fee589
    10 Na35a5c008ac94faa8f83d6453f1b2e00
    11 Nb24af30a8f4d421c8d82474406347aca
    12 Nc5a940993e984eb0b0ef0a854a079e17
    13 Nd5f0f2386e2a4a909a119bc5206a59bf
    14 Nf94448cb7c5f4ecdb9ddbb43991b4702
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author Nbacd772b583d42b7a9ba93252103d18d
    18 schema:citation sg:pub.10.1007/0-387-29362-0
    19 sg:pub.10.1007/11871842_21
    20 sg:pub.10.1007/s00335-007-9043-3
    21 sg:pub.10.1038/30918
    22 sg:pub.10.1038/75556
    23 sg:pub.10.1038/nature06758
    24 sg:pub.10.1038/nn.2207
    25 sg:pub.10.1186/1471-2105-3-34
    26 sg:pub.10.1186/1471-2105-7-381
    27 sg:pub.10.1186/1471-2105-8-166
    28 sg:pub.10.1186/1471-2105-8-22
    29 sg:pub.10.1186/1471-2164-7-40
    30 sg:pub.10.1186/1752-0509-1-24
    31 sg:pub.10.1186/1752-0509-1-37
    32 sg:pub.10.1186/1752-0509-1-54
    33 sg:pub.10.1186/1752-0509-2-16
    34 sg:pub.10.1186/1752-0509-2-34
    35 sg:pub.10.1186/1752-0509-2-95
    36 sg:pub.10.1186/gb-2002-3-7-research0036
    37 sg:pub.10.1186/gb-2003-4-5-p3
    38 schema:datePublished 2008-12-29
    39 schema:datePublishedReg 2008-12-29
    40 schema:description BackgroundCorrelation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial.ResultsThe WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings.ConclusionThe WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
    41 schema:genre article
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N6c58a1f5a3114a8eae9da127d680b5a6
    44 Nd9e22d2148bd43abb3f8d2eadc60c87e
    45 sg:journal.1023786
    46 schema:keywords R function
    47 R package
    48 R software package
    49 WGCNA package
    50 accompanying tutorial
    51 additional material
    52 analysis
    53 applications
    54 approach
    55 aspects
    56 bioinformatics applications
    57 biological context
    58 biology methods
    59 biomarkers
    60 brain imaging data
    61 calculations
    62 cancer
    63 candidate biomarkers
    64 clusters
    65 co-expression network analysis
    66 code
    67 collection
    68 comprehensive collection
    69 construction
    70 context
    71 correlation network analysis
    72 correlation patterns
    73 data
    74 data mining approach
    75 data simulation
    76 detection
    77 development
    78 different settings
    79 eigengenes
    80 example
    81 expression data
    82 external software
    83 function
    84 gene co-expression network analysis
    85 gene expression data
    86 gene screening method
    87 gene selection
    88 genes
    89 genetics
    90 hub genes
    91 imaging data
    92 implementation
    93 intramodular hub genes
    94 materials
    95 measures
    96 method
    97 method development
    98 methodology
    99 microarray samples
    100 mining approach
    101 module
    102 module detection
    103 module eigengenes
    104 mouse genetics
    105 need
    106 network
    107 network analysis
    108 network construction
    109 network methodology
    110 package
    111 part
    112 patterns
    113 properties
    114 publications
    115 sample traits
    116 samples
    117 screening method
    118 selection
    119 separate publication
    120 setting
    121 simulations
    122 software
    123 software implementation
    124 software package
    125 software tutorials
    126 source code
    127 such clusters
    128 systems biology methods
    129 target
    130 therapeutic target
    131 topological properties
    132 traits
    133 tutorial
    134 variety
    135 visualization
    136 yeast genetics
    137 schema:name WGCNA: an R package for weighted correlation network analysis
    138 schema:pagination 559
    139 schema:productId N3ef4a2f0e20b4d41a05308917dabe8de
    140 N8d0e1b5aa88a4c82afdcd26f9d3b18e3
    141 N9831117b71f842649453f53d86f0897c
    142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020312314
    143 https://doi.org/10.1186/1471-2105-9-559
    144 schema:sdDatePublished 2022-12-01T06:26
    145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    146 schema:sdPublisher N3d4b765a7899431f94ac1d00fea2cef8
    147 schema:url https://doi.org/10.1186/1471-2105-9-559
    148 sgo:license sg:explorer/license/
    149 sgo:sdDataset articles
    150 rdf:type schema:ScholarlyArticle
    151 N23a9710e0f55461c9fc29f266b66b3d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Pattern Recognition, Automated
    153 rdf:type schema:DefinedTerm
    154 N33f6cba3a9ff4797879540b5d4bf4acb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Computational Biology
    156 rdf:type schema:DefinedTerm
    157 N37846d76ce0a4f9ba514f9af5c5a1559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Software
    159 rdf:type schema:DefinedTerm
    160 N3d4b765a7899431f94ac1d00fea2cef8 schema:name Springer Nature - SN SciGraph project
    161 rdf:type schema:Organization
    162 N3ef4a2f0e20b4d41a05308917dabe8de schema:name pubmed_id
    163 schema:value 19114008
    164 rdf:type schema:PropertyValue
    165 N4838d19e5f6746ee811c32ff6dd2fec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Computer Graphics
    167 rdf:type schema:DefinedTerm
    168 N54d47bcab275475187b565a059ec0f46 rdf:first sg:person.015714446737.06
    169 rdf:rest rdf:nil
    170 N569cfdb90176422ebf58d3299c4f4ded schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Databases, Genetic
    172 rdf:type schema:DefinedTerm
    173 N5bcdfb27d6244337b64f657aa6880f45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Animals
    175 rdf:type schema:DefinedTerm
    176 N6c58a1f5a3114a8eae9da127d680b5a6 schema:volumeNumber 9
    177 rdf:type schema:PublicationVolume
    178 N70c35b8e900e4975b85b81e19ca1acdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Oligonucleotide Array Sequence Analysis
    180 rdf:type schema:DefinedTerm
    181 N8829beaf87504c11aafbe4237221b39c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Mice
    183 rdf:type schema:DefinedTerm
    184 N8b878bc7c4f5496799c0eaf020fee589 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Computing Methodologies
    186 rdf:type schema:DefinedTerm
    187 N8d0e1b5aa88a4c82afdcd26f9d3b18e3 schema:name doi
    188 schema:value 10.1186/1471-2105-9-559
    189 rdf:type schema:PropertyValue
    190 N9831117b71f842649453f53d86f0897c schema:name dimensions_id
    191 schema:value pub.1020312314
    192 rdf:type schema:PropertyValue
    193 Na35a5c008ac94faa8f83d6453f1b2e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Systems Biology
    195 rdf:type schema:DefinedTerm
    196 Nb24af30a8f4d421c8d82474406347aca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Programming Languages
    198 rdf:type schema:DefinedTerm
    199 Nbacd772b583d42b7a9ba93252103d18d rdf:first sg:person.01021573403.17
    200 rdf:rest N54d47bcab275475187b565a059ec0f46
    201 Nc5a940993e984eb0b0ef0a854a079e17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Algorithms
    203 rdf:type schema:DefinedTerm
    204 Nd5f0f2386e2a4a909a119bc5206a59bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Humans
    206 rdf:type schema:DefinedTerm
    207 Nd9e22d2148bd43abb3f8d2eadc60c87e schema:issueNumber 1
    208 rdf:type schema:PublicationIssue
    209 Nf94448cb7c5f4ecdb9ddbb43991b4702 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Gene Expression Profiling
    211 rdf:type schema:DefinedTerm
    212 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    213 schema:name Biological Sciences
    214 rdf:type schema:DefinedTerm
    215 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Genetics
    217 rdf:type schema:DefinedTerm
    218 sg:grant.2438817 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-559
    219 rdf:type schema:MonetaryGrant
    220 sg:grant.2440173 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-559
    221 rdf:type schema:MonetaryGrant
    222 sg:grant.2561190 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-559
    223 rdf:type schema:MonetaryGrant
    224 sg:journal.1023786 schema:issn 1471-2105
    225 schema:name BMC Bioinformatics
    226 schema:publisher Springer Nature
    227 rdf:type schema:Periodical
    228 sg:person.01021573403.17 schema:affiliation grid-institutes:grid.19006.3e
    229 schema:familyName Langfelder
    230 schema:givenName Peter
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021573403.17
    232 rdf:type schema:Person
    233 sg:person.015714446737.06 schema:affiliation grid-institutes:grid.19006.3e
    234 schema:familyName Horvath
    235 schema:givenName Steve
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714446737.06
    237 rdf:type schema:Person
    238 sg:pub.10.1007/0-387-29362-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014125606
    239 https://doi.org/10.1007/0-387-29362-0
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/11871842_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008223646
    242 https://doi.org/10.1007/11871842_21
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s00335-007-9043-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019846773
    245 https://doi.org/10.1007/s00335-007-9043-3
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    248 https://doi.org/10.1038/30918
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    251 https://doi.org/10.1038/75556
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nature06758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022504514
    254 https://doi.org/10.1038/nature06758
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nn.2207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047969922
    257 https://doi.org/10.1038/nn.2207
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/1471-2105-3-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030797440
    260 https://doi.org/10.1186/1471-2105-3-34
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/1471-2105-7-381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049538198
    263 https://doi.org/10.1186/1471-2105-7-381
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/1471-2105-8-166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029147952
    266 https://doi.org/10.1186/1471-2105-8-166
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/1471-2105-8-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017575653
    269 https://doi.org/10.1186/1471-2105-8-22
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/1471-2164-7-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033355699
    272 https://doi.org/10.1186/1471-2164-7-40
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/1752-0509-1-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051873410
    275 https://doi.org/10.1186/1752-0509-1-24
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/1752-0509-1-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027188239
    278 https://doi.org/10.1186/1752-0509-1-37
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/1752-0509-1-54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052159443
    281 https://doi.org/10.1186/1752-0509-1-54
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1186/1752-0509-2-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037049388
    284 https://doi.org/10.1186/1752-0509-2-16
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1186/1752-0509-2-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005456959
    287 https://doi.org/10.1186/1752-0509-2-34
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1186/1752-0509-2-95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043460706
    290 https://doi.org/10.1186/1752-0509-2-95
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1186/gb-2002-3-7-research0036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041996792
    293 https://doi.org/10.1186/gb-2002-3-7-research0036
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/gb-2003-4-5-p3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021292424
    296 https://doi.org/10.1186/gb-2003-4-5-p3
    297 rdf:type schema:CreativeWork
    298 grid-institutes:grid.19006.3e schema:alternateName Department of Human Genetics and Department of Biostatistics, University of California, 90095, Los Angeles, CA, USA
    299 Department of Human Genetics, University of California, 90095, Los Angeles, CA, USA
    300 schema:name Department of Human Genetics and Department of Biostatistics, University of California, 90095, Los Angeles, CA, USA
    301 Department of Human Genetics, University of California, 90095, Los Angeles, CA, USA
    302 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...