Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Jukka Corander, Pekka Marttinen, Jukka Sirén, Jing Tang

ABSTRACT

BACKGROUND: During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. RESULTS: We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. CONCLUSION: The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html. More... »

PAGES

539

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-539

DOI

http://dx.doi.org/10.1186/1471-2105-9-539

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049532772

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19087322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Structures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c5bo Akademi University", 
          "id": "https://www.grid.ac/institutes/grid.13797.3b", 
          "name": [
            "Department of Mathematics, F\u00e4nriksgatan 3B, \u00c5bo Akademi University, Fin-20500, \u00c5bo, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corander", 
        "givenName": "Jukka", 
        "id": "sg:person.01125514227.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marttinen", 
        "givenName": "Pekka", 
        "id": "sg:person.0753733617.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sir\u00e9n", 
        "givenName": "Jukka", 
        "id": "sg:person.0752104153.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752104153.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Jing", 
        "id": "sg:person.01364107431.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364107431.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1078311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005962126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.033803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006529040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.033803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006529040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209350", 
          "https://doi.org/10.1186/1471-2105-9-421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209350", 
          "https://doi.org/10.1186/1471-2105-9-421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008342312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008780244", 
          "https://doi.org/10.1038/nrg1904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008780244", 
          "https://doi.org/10.1038/nrg1904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.43.9.4665-4673.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.072371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015610360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.072371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015610360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016574435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016990478", 
          "https://doi.org/10.1007/s00180-007-0072-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016990478", 
          "https://doi.org/10.1007/s00180-007-0072-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020885230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.061317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023674769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.061317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023674769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2006.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029406893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tpb.2007.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033862996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.059923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039098422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.059923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039098422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-006-9391-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042853180", 
          "https://doi.org/10.1007/s11222-006-9391-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045116249", 
          "https://doi.org/10.1038/nrg1318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045116249", 
          "https://doi.org/10.1038/nrg1318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/f05-224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048396101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2006.02994.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048622172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048931726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10592-005-9098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049775591", 
          "https://doi.org/10.1007/s10592-005-9098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10592-005-9098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049775591", 
          "https://doi.org/10.1007/s10592-005-9098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-006-9161-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051348821", 
          "https://doi.org/10.1007/s11538-006-9161-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-8286.2005.01031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051723895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053304906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s001667230100502x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053882867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s001667230100502x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053882867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1995.10476572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214505000000664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157489306777011932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069217404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075016616", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075238023", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075259850", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075335894", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.\nRESULTS: We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.\nCONCLUSION: The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-539", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4247660", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations", 
    "pagination": "539", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ebf62b80b12dbb20519eee134762dd2bdc678db4acd01108dcfa31b66ba4e863"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19087322"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-539"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049532772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-539", 
      "https://app.dimensions.ai/details/publication/pub.1049532772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-9-539"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      77 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-539 schema:about N045e786e971642b690b2f4381473bef5
2 N06dc0f8f7fe244bd8576eb4217918c8a
3 N2133f85eeb2d4c6f8e67ae22d977e299
4 N271b325e4acf485699061ff31ad242dd
5 N3aad667ce31b40bc912e004efa5e46e4
6 N3f6a618c3c024523b62c35ffb8e4620a
7 N4c2a0d62fc77424794e7c0a52975b2d2
8 N55309619ad554f398e3fb662c9e56d34
9 N570942283cdd4a318af18b3b800f61e0
10 N837cbacf453640279069426adc20f892
11 N8434dbbebe93418e819148b01e6dab50
12 N97e3f0e7a72f4c85abacd0880ff5043d
13 N9c8b341d33f94f3d8a230324bb3a3c42
14 Ncff6f55b1d004d71bc4076f4d2896a64
15 Ndb5629aa3ccf4de695e4228d54e0853a
16 anzsrc-for:01
17 anzsrc-for:0104
18 schema:author N9fd1dbfe375642b7afe3d6e22f8f00e5
19 schema:citation sg:pub.10.1007/s00180-007-0072-x
20 sg:pub.10.1007/s10592-005-9098-1
21 sg:pub.10.1007/s11222-006-9391-y
22 sg:pub.10.1007/s11538-006-9161-1
23 sg:pub.10.1038/nrg1318
24 sg:pub.10.1038/nrg1904
25 sg:pub.10.1186/1471-2105-9-421
26 https://app.dimensions.ai/details/publication/pub.1074647594
27 https://app.dimensions.ai/details/publication/pub.1075016616
28 https://app.dimensions.ai/details/publication/pub.1075238023
29 https://app.dimensions.ai/details/publication/pub.1075259850
30 https://app.dimensions.ai/details/publication/pub.1075335894
31 https://doi.org/10.1016/j.mbs.2006.09.015
32 https://doi.org/10.1016/j.tpb.2007.06.004
33 https://doi.org/10.1017/s001667230100502x
34 https://doi.org/10.1080/01621459.1995.10476572
35 https://doi.org/10.1093/bioinformatics/bth250
36 https://doi.org/10.1093/bioinformatics/btn136
37 https://doi.org/10.1093/bioinformatics/btn419
38 https://doi.org/10.1109/tpami.2008.53
39 https://doi.org/10.1111/j.1365-294x.2006.02994.x
40 https://doi.org/10.1111/j.1471-8286.2005.01031.x
41 https://doi.org/10.1126/science.1078311
42 https://doi.org/10.1128/jcm.43.9.4665-4673.2005
43 https://doi.org/10.1139/f05-224
44 https://doi.org/10.1198/016214505000000664
45 https://doi.org/10.1371/journal.pgen.0030185
46 https://doi.org/10.1534/genetics.104.033803
47 https://doi.org/10.1534/genetics.106.059923
48 https://doi.org/10.1534/genetics.106.061317
49 https://doi.org/10.1534/genetics.107.072371
50 https://doi.org/10.2174/157489306777011932
51 https://doi.org/10.2202/1544-6115.1303
52 schema:datePublished 2008-12
53 schema:datePublishedReg 2008-12-01
54 schema:description BACKGROUND: During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. RESULTS: We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. CONCLUSION: The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N0146deb0bed3403ea7a72b5f5f34c70e
59 N445ae2567e2f4c22886a2aa8b1c2e311
60 sg:journal.1023786
61 schema:name Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations
62 schema:pagination 539
63 schema:productId N134286ac26204bc5937ce3db04d85562
64 N5a99d7e03a604a4297e8e3b704c884b2
65 N9d2685349b25435ba458a395e4e9de76
66 Nde73eb200abb43f28ad2ac18885867f6
67 Nf807218184ca4402bd420131debcf8cb
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532772
69 https://doi.org/10.1186/1471-2105-9-539
70 schema:sdDatePublished 2019-04-11T10:33
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N9887d81f11464b2b97cb78e6c981d685
73 schema:url https://link.springer.com/10.1186%2F1471-2105-9-539
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0146deb0bed3403ea7a72b5f5f34c70e schema:volumeNumber 9
78 rdf:type schema:PublicationVolume
79 N045e786e971642b690b2f4381473bef5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Bayes Theorem
81 rdf:type schema:DefinedTerm
82 N05ab4f59c09a4b878772b8daa91e8269 rdf:first sg:person.01364107431.03
83 rdf:rest rdf:nil
84 N06dc0f8f7fe244bd8576eb4217918c8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Stochastic Processes
86 rdf:type schema:DefinedTerm
87 N134286ac26204bc5937ce3db04d85562 schema:name doi
88 schema:value 10.1186/1471-2105-9-539
89 rdf:type schema:PropertyValue
90 N2133f85eeb2d4c6f8e67ae22d977e299 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Population
92 rdf:type schema:DefinedTerm
93 N271b325e4acf485699061ff31ad242dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Genetic Linkage
95 rdf:type schema:DefinedTerm
96 N3aad667ce31b40bc912e004efa5e46e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 N3f6a618c3c024523b62c35ffb8e4620a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Genetic Structures
101 rdf:type schema:DefinedTerm
102 N445ae2567e2f4c22886a2aa8b1c2e311 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 N4c2a0d62fc77424794e7c0a52975b2d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Sequence Analysis, DNA
106 rdf:type schema:DefinedTerm
107 N55309619ad554f398e3fb662c9e56d34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Models, Genetic
109 rdf:type schema:DefinedTerm
110 N570942283cdd4a318af18b3b800f61e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Computational Biology
112 rdf:type schema:DefinedTerm
113 N5a99d7e03a604a4297e8e3b704c884b2 schema:name nlm_unique_id
114 schema:value 100965194
115 rdf:type schema:PropertyValue
116 N74acd3028b814e9891c84a68004510b7 rdf:first sg:person.0753733617.28
117 rdf:rest Nabf24de576cd43ada181f017fc6c7cc2
118 N837cbacf453640279069426adc20f892 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Cluster Analysis
120 rdf:type schema:DefinedTerm
121 N8434dbbebe93418e819148b01e6dab50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Humans
123 rdf:type schema:DefinedTerm
124 N97e3f0e7a72f4c85abacd0880ff5043d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Databases, Genetic
126 rdf:type schema:DefinedTerm
127 N9887d81f11464b2b97cb78e6c981d685 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N9c8b341d33f94f3d8a230324bb3a3c42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Genetics, Population
131 rdf:type schema:DefinedTerm
132 N9d2685349b25435ba458a395e4e9de76 schema:name pubmed_id
133 schema:value 19087322
134 rdf:type schema:PropertyValue
135 N9fd1dbfe375642b7afe3d6e22f8f00e5 rdf:first sg:person.01125514227.61
136 rdf:rest N74acd3028b814e9891c84a68004510b7
137 Nabf24de576cd43ada181f017fc6c7cc2 rdf:first sg:person.0752104153.37
138 rdf:rest N05ab4f59c09a4b878772b8daa91e8269
139 Ncff6f55b1d004d71bc4076f4d2896a64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Software
141 rdf:type schema:DefinedTerm
142 Ndb5629aa3ccf4de695e4228d54e0853a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Alleles
144 rdf:type schema:DefinedTerm
145 Nde73eb200abb43f28ad2ac18885867f6 schema:name readcube_id
146 schema:value ebf62b80b12dbb20519eee134762dd2bdc678db4acd01108dcfa31b66ba4e863
147 rdf:type schema:PropertyValue
148 Nf807218184ca4402bd420131debcf8cb schema:name dimensions_id
149 schema:value pub.1049532772
150 rdf:type schema:PropertyValue
151 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
152 schema:name Mathematical Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
155 schema:name Statistics
156 rdf:type schema:DefinedTerm
157 sg:grant.4247660 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-539
158 rdf:type schema:MonetaryGrant
159 sg:journal.1023786 schema:issn 1471-2105
160 schema:name BMC Bioinformatics
161 rdf:type schema:Periodical
162 sg:person.01125514227.61 schema:affiliation https://www.grid.ac/institutes/grid.13797.3b
163 schema:familyName Corander
164 schema:givenName Jukka
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61
166 rdf:type schema:Person
167 sg:person.01364107431.03 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
168 schema:familyName Tang
169 schema:givenName Jing
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364107431.03
171 rdf:type schema:Person
172 sg:person.0752104153.37 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
173 schema:familyName Sirén
174 schema:givenName Jukka
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752104153.37
176 rdf:type schema:Person
177 sg:person.0753733617.28 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
178 schema:familyName Marttinen
179 schema:givenName Pekka
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28
181 rdf:type schema:Person
182 sg:pub.10.1007/s00180-007-0072-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016990478
183 https://doi.org/10.1007/s00180-007-0072-x
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s10592-005-9098-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049775591
186 https://doi.org/10.1007/s10592-005-9098-1
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s11222-006-9391-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042853180
189 https://doi.org/10.1007/s11222-006-9391-y
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s11538-006-9161-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051348821
192 https://doi.org/10.1007/s11538-006-9161-1
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrg1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045116249
195 https://doi.org/10.1038/nrg1318
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nrg1904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008780244
198 https://doi.org/10.1038/nrg1904
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1471-2105-9-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008209350
201 https://doi.org/10.1186/1471-2105-9-421
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1075016616 schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1075238023 schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1075259850 schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1075335894 schema:CreativeWork
208 https://doi.org/10.1016/j.mbs.2006.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029406893
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.tpb.2007.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033862996
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1017/s001667230100502x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053882867
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1080/01621459.1995.10476572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304855
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/bth250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016574435
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/btn136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008342312
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/bioinformatics/btn419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053304906
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/tpami.2008.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743656
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/j.1365-294x.2006.02994.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048622172
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/j.1471-8286.2005.01031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051723895
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.1078311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005962126
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1128/jcm.43.9.4665-4673.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915617
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1139/f05-224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048396101
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1198/016214505000000664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198398
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1371/journal.pgen.0030185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020885230
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1534/genetics.104.033803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006529040
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1534/genetics.106.059923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039098422
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1534/genetics.106.061317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023674769
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1534/genetics.107.072371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015610360
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2174/157489306777011932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069217404
247 rdf:type schema:CreativeWork
248 https://doi.org/10.2202/1544-6115.1303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048931726
249 rdf:type schema:CreativeWork
250 https://www.grid.ac/institutes/grid.13797.3b schema:alternateName Åbo Akademi University
251 schema:name Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University, Fin-20500, Åbo, Finland
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
254 schema:name Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...