Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-16

AUTHORS

Jukka Corander, Pekka Marttinen, Jukka Sirén, Jing Tang

ABSTRACT

BackgroundDuring the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.ResultsWe discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.ConclusionThe Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html. More... »

PAGES

539

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-539

DOI

http://dx.doi.org/10.1186/1471-2105-9-539

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049532772

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19087322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Structures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, F\u00e4nriksgatan 3B, \u00c5bo Akademi University, Fin-20500, \u00c5bo, Finland", 
          "id": "http://www.grid.ac/institutes/grid.13797.3b", 
          "name": [
            "Department of Mathematics, F\u00e4nriksgatan 3B, \u00c5bo Akademi University, Fin-20500, \u00c5bo, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corander", 
        "givenName": "Jukka", 
        "id": "sg:person.01125514227.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland", 
          "id": "http://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marttinen", 
        "givenName": "Pekka", 
        "id": "sg:person.0753733617.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland", 
          "id": "http://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sir\u00e9n", 
        "givenName": "Jukka", 
        "id": "sg:person.0752104153.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752104153.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland", 
          "id": "http://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Jing", 
        "id": "sg:person.01364107431.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364107431.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11538-006-9161-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051348821", 
          "https://doi.org/10.1007/s11538-006-9161-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10592-005-9098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049775591", 
          "https://doi.org/10.1007/s10592-005-9098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-006-9391-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042853180", 
          "https://doi.org/10.1007/s11222-006-9391-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045116249", 
          "https://doi.org/10.1038/nrg1318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008780244", 
          "https://doi.org/10.1038/nrg1904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209350", 
          "https://doi.org/10.1186/1471-2105-9-421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016990478", 
          "https://doi.org/10.1007/s00180-007-0072-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-16", 
    "datePublishedReg": "2008-12-16", 
    "description": "BackgroundDuring the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.ResultsWe discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.ConclusionThe Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-9-539", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4247660", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "genetic structure", 
      "BAPS software", 
      "genetic linkage model", 
      "Bayesian modelling methods", 
      "Bayesian statistical model", 
      "new statistical tools", 
      "genetic mixture models", 
      "genetic population structure", 
      "genetic structure analysis", 
      "DNA sequence data", 
      "population genetic inference", 
      "levels of admixture", 
      "population genetic data", 
      "statistical model", 
      "genomic positions", 
      "Bayesian modelling", 
      "genetic inferences", 
      "statistical methods", 
      "molecular data", 
      "population structure", 
      "statistical approach", 
      "sequence data", 
      "statistical tools", 
      "computational characteristics", 
      "genetic data", 
      "mixture model", 
      "molecular markers", 
      "Bayes' theorem", 
      "sampled individuals", 
      "modelling method", 
      "theorem", 
      "user-specified number", 
      "different ancestries", 
      "biological problems", 
      "Mac OS X systems", 
      "complex datasets", 
      "inference", 
      "earlier work", 
      "structure analysis", 
      "BAPS", 
      "model", 
      "multiple computers", 
      "recent version", 
      "current methods", 
      "alleles", 
      "ancestry", 
      "linkage model", 
      "algorithm", 
      "wide range", 
      "population", 
      "X system", 
      "modelling", 
      "research area", 
      "array", 
      "structure", 
      "problem", 
      "BAP", 
      "solution", 
      "enhanced tools", 
      "population sample", 
      "single dataset", 
      "complexity", 
      "software", 
      "number", 
      "markers", 
      "computer", 
      "version", 
      "tool", 
      "recent decades", 
      "analysis", 
      "dataset", 
      "hypothesis", 
      "approach", 
      "system", 
      "clusters", 
      "admixture", 
      "data", 
      "implementation", 
      "levels", 
      "cases", 
      "work", 
      "individuals", 
      "position", 
      "insufficient solution", 
      "scientific literature", 
      "range", 
      "ResultsWe", 
      "amount", 
      "decades", 
      "window", 
      "scientists", 
      "interface", 
      "literature", 
      "characteristics", 
      "area", 
      "necessity", 
      "article", 
      "questions", 
      "Linux", 
      "samples", 
      "method", 
      "challenges", 
      "need"
    ], 
    "name": "Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations", 
    "pagination": "539", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049532772"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-539"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19087322"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-539", 
      "https://app.dimensions.ai/details/publication/pub.1049532772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_463.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-9-539"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'


 

This table displays all metadata directly associated to this object as RDF triples.

294 TRIPLES      22 PREDICATES      154 URIs      135 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-539 schema:about N18b724e9bd334e408ad89850bb84d6c4
2 N18fd60648b0e4ebf9977e00b2e92fa85
3 N1a3ceab9fed040309379943809b4086e
4 N32342305a0974bc1918b69fb45335e8d
5 N3e6008610fea44aaa71f6f5d614307af
6 N64f65dbcc4fb4167829f8b911412e222
7 N6981bcd8e56a44e099323de0a0e54942
8 N92f9279270c54b9782fd4817d609b5a7
9 Na628a64f3cc545589d530d2fa3a7559e
10 Nb0f6bdabcd9e4fa0b7859d653abb9b89
11 Ncbc99660cace498cbfb35f994e01adae
12 Ne3fe238927554e1db436499e9f5b3412
13 Nf33ab88f96924578bc043737c4ea6695
14 Nf7cf6ebce04f47628dfcb0526e5d8023
15 Nfaaf612b237f42f999693965b8542b66
16 anzsrc-for:01
17 anzsrc-for:0104
18 anzsrc-for:06
19 anzsrc-for:0604
20 anzsrc-for:08
21 anzsrc-for:0801
22 schema:author N335f93911a09462dbb7be3b1347921a5
23 schema:citation sg:pub.10.1007/s00180-007-0072-x
24 sg:pub.10.1007/s10592-005-9098-1
25 sg:pub.10.1007/s11222-006-9391-y
26 sg:pub.10.1007/s11538-006-9161-1
27 sg:pub.10.1038/nrg1318
28 sg:pub.10.1038/nrg1904
29 sg:pub.10.1186/1471-2105-9-421
30 schema:datePublished 2008-12-16
31 schema:datePublishedReg 2008-12-16
32 schema:description BackgroundDuring the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.ResultsWe discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.ConclusionThe Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.
33 schema:genre article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N0fe845e8b3514280b0d80b94f7d016d1
37 Ne36320cc917b491ebbfba920e9364242
38 sg:journal.1023786
39 schema:keywords BAP
40 BAPS
41 BAPS software
42 Bayes' theorem
43 Bayesian modelling
44 Bayesian modelling methods
45 Bayesian statistical model
46 DNA sequence data
47 Linux
48 Mac OS X systems
49 ResultsWe
50 X system
51 admixture
52 algorithm
53 alleles
54 amount
55 analysis
56 ancestry
57 approach
58 area
59 array
60 article
61 biological problems
62 cases
63 challenges
64 characteristics
65 clusters
66 complex datasets
67 complexity
68 computational characteristics
69 computer
70 current methods
71 data
72 dataset
73 decades
74 different ancestries
75 earlier work
76 enhanced tools
77 genetic data
78 genetic inferences
79 genetic linkage model
80 genetic mixture models
81 genetic population structure
82 genetic structure
83 genetic structure analysis
84 genomic positions
85 hypothesis
86 implementation
87 individuals
88 inference
89 insufficient solution
90 interface
91 levels
92 levels of admixture
93 linkage model
94 literature
95 markers
96 method
97 mixture model
98 model
99 modelling
100 modelling method
101 molecular data
102 molecular markers
103 multiple computers
104 necessity
105 need
106 new statistical tools
107 number
108 population
109 population genetic data
110 population genetic inference
111 population sample
112 population structure
113 position
114 problem
115 questions
116 range
117 recent decades
118 recent version
119 research area
120 sampled individuals
121 samples
122 scientific literature
123 scientists
124 sequence data
125 single dataset
126 software
127 solution
128 statistical approach
129 statistical methods
130 statistical model
131 statistical tools
132 structure
133 structure analysis
134 system
135 theorem
136 tool
137 user-specified number
138 version
139 wide range
140 window
141 work
142 schema:name Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations
143 schema:pagination 539
144 schema:productId N50cdfb12dfc34dd5b2a56dff0265dcde
145 N6d1aead1bf77497cbafc2b166c9a86b9
146 Ne8cc3adfc0684cd0bb1c3bfaea4112ec
147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532772
148 https://doi.org/10.1186/1471-2105-9-539
149 schema:sdDatePublished 2022-05-20T07:24
150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
151 schema:sdPublisher Na3ed08fb6f2049228f599f84065afdc5
152 schema:url https://doi.org/10.1186/1471-2105-9-539
153 sgo:license sg:explorer/license/
154 sgo:sdDataset articles
155 rdf:type schema:ScholarlyArticle
156 N0fe845e8b3514280b0d80b94f7d016d1 schema:issueNumber 1
157 rdf:type schema:PublicationIssue
158 N18b724e9bd334e408ad89850bb84d6c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Cluster Analysis
160 rdf:type schema:DefinedTerm
161 N18fd60648b0e4ebf9977e00b2e92fa85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Sequence Analysis, DNA
163 rdf:type schema:DefinedTerm
164 N1a3ceab9fed040309379943809b4086e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Genetic Structures
166 rdf:type schema:DefinedTerm
167 N32342305a0974bc1918b69fb45335e8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Stochastic Processes
169 rdf:type schema:DefinedTerm
170 N335f93911a09462dbb7be3b1347921a5 rdf:first sg:person.01125514227.61
171 rdf:rest N6bcf903c9bdb428380e7f128358277cd
172 N3e6008610fea44aaa71f6f5d614307af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Genetic Linkage
174 rdf:type schema:DefinedTerm
175 N50cdfb12dfc34dd5b2a56dff0265dcde schema:name pubmed_id
176 schema:value 19087322
177 rdf:type schema:PropertyValue
178 N64f65dbcc4fb4167829f8b911412e222 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Genetics, Population
180 rdf:type schema:DefinedTerm
181 N6981bcd8e56a44e099323de0a0e54942 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Alleles
183 rdf:type schema:DefinedTerm
184 N6bcf903c9bdb428380e7f128358277cd rdf:first sg:person.0753733617.28
185 rdf:rest N8898a6e3eee345d393f6ad2ce06e2624
186 N6d1aead1bf77497cbafc2b166c9a86b9 schema:name doi
187 schema:value 10.1186/1471-2105-9-539
188 rdf:type schema:PropertyValue
189 N8898a6e3eee345d393f6ad2ce06e2624 rdf:first sg:person.0752104153.37
190 rdf:rest Nfce8ae491d014cfe9b14b44496df20a3
191 N92f9279270c54b9782fd4817d609b5a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Humans
193 rdf:type schema:DefinedTerm
194 Na3ed08fb6f2049228f599f84065afdc5 schema:name Springer Nature - SN SciGraph project
195 rdf:type schema:Organization
196 Na628a64f3cc545589d530d2fa3a7559e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Population
198 rdf:type schema:DefinedTerm
199 Nb0f6bdabcd9e4fa0b7859d653abb9b89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Bayes Theorem
201 rdf:type schema:DefinedTerm
202 Ncbc99660cace498cbfb35f994e01adae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Databases, Genetic
204 rdf:type schema:DefinedTerm
205 Ne36320cc917b491ebbfba920e9364242 schema:volumeNumber 9
206 rdf:type schema:PublicationVolume
207 Ne3fe238927554e1db436499e9f5b3412 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Algorithms
209 rdf:type schema:DefinedTerm
210 Ne8cc3adfc0684cd0bb1c3bfaea4112ec schema:name dimensions_id
211 schema:value pub.1049532772
212 rdf:type schema:PropertyValue
213 Nf33ab88f96924578bc043737c4ea6695 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Models, Genetic
215 rdf:type schema:DefinedTerm
216 Nf7cf6ebce04f47628dfcb0526e5d8023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Software
218 rdf:type schema:DefinedTerm
219 Nfaaf612b237f42f999693965b8542b66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Computational Biology
221 rdf:type schema:DefinedTerm
222 Nfce8ae491d014cfe9b14b44496df20a3 rdf:first sg:person.01364107431.03
223 rdf:rest rdf:nil
224 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
225 schema:name Mathematical Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
228 schema:name Statistics
229 rdf:type schema:DefinedTerm
230 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
231 schema:name Biological Sciences
232 rdf:type schema:DefinedTerm
233 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
234 schema:name Genetics
235 rdf:type schema:DefinedTerm
236 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
237 schema:name Information and Computing Sciences
238 rdf:type schema:DefinedTerm
239 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
240 schema:name Artificial Intelligence and Image Processing
241 rdf:type schema:DefinedTerm
242 sg:grant.4247660 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-539
243 rdf:type schema:MonetaryGrant
244 sg:journal.1023786 schema:issn 1471-2105
245 schema:name BMC Bioinformatics
246 schema:publisher Springer Nature
247 rdf:type schema:Periodical
248 sg:person.01125514227.61 schema:affiliation grid-institutes:grid.13797.3b
249 schema:familyName Corander
250 schema:givenName Jukka
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61
252 rdf:type schema:Person
253 sg:person.01364107431.03 schema:affiliation grid-institutes:grid.7737.4
254 schema:familyName Tang
255 schema:givenName Jing
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364107431.03
257 rdf:type schema:Person
258 sg:person.0752104153.37 schema:affiliation grid-institutes:grid.7737.4
259 schema:familyName Sirén
260 schema:givenName Jukka
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752104153.37
262 rdf:type schema:Person
263 sg:person.0753733617.28 schema:affiliation grid-institutes:grid.7737.4
264 schema:familyName Marttinen
265 schema:givenName Pekka
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28
267 rdf:type schema:Person
268 sg:pub.10.1007/s00180-007-0072-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016990478
269 https://doi.org/10.1007/s00180-007-0072-x
270 rdf:type schema:CreativeWork
271 sg:pub.10.1007/s10592-005-9098-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049775591
272 https://doi.org/10.1007/s10592-005-9098-1
273 rdf:type schema:CreativeWork
274 sg:pub.10.1007/s11222-006-9391-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042853180
275 https://doi.org/10.1007/s11222-006-9391-y
276 rdf:type schema:CreativeWork
277 sg:pub.10.1007/s11538-006-9161-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051348821
278 https://doi.org/10.1007/s11538-006-9161-1
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/nrg1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045116249
281 https://doi.org/10.1038/nrg1318
282 rdf:type schema:CreativeWork
283 sg:pub.10.1038/nrg1904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008780244
284 https://doi.org/10.1038/nrg1904
285 rdf:type schema:CreativeWork
286 sg:pub.10.1186/1471-2105-9-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008209350
287 https://doi.org/10.1186/1471-2105-9-421
288 rdf:type schema:CreativeWork
289 grid-institutes:grid.13797.3b schema:alternateName Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University, Fin-20500, Åbo, Finland
290 schema:name Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University, Fin-20500, Åbo, Finland
291 rdf:type schema:Organization
292 grid-institutes:grid.7737.4 schema:alternateName Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland
293 schema:name Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland
294 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...