Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Jukka Corander, Pekka Marttinen, Jukka Sirén, Jing Tang

ABSTRACT

BACKGROUND: During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. RESULTS: We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. CONCLUSION: The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html. More... »

PAGES

539

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-539

DOI

http://dx.doi.org/10.1186/1471-2105-9-539

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049532772

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19087322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Structures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c5bo Akademi University", 
          "id": "https://www.grid.ac/institutes/grid.13797.3b", 
          "name": [
            "Department of Mathematics, F\u00e4nriksgatan 3B, \u00c5bo Akademi University, Fin-20500, \u00c5bo, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corander", 
        "givenName": "Jukka", 
        "id": "sg:person.01125514227.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marttinen", 
        "givenName": "Pekka", 
        "id": "sg:person.0753733617.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sir\u00e9n", 
        "givenName": "Jukka", 
        "id": "sg:person.0752104153.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752104153.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Jing", 
        "id": "sg:person.01364107431.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364107431.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1078311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005962126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.033803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006529040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.033803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006529040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209350", 
          "https://doi.org/10.1186/1471-2105-9-421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209350", 
          "https://doi.org/10.1186/1471-2105-9-421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008342312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008780244", 
          "https://doi.org/10.1038/nrg1904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008780244", 
          "https://doi.org/10.1038/nrg1904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.43.9.4665-4673.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.072371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015610360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.072371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015610360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016574435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016990478", 
          "https://doi.org/10.1007/s00180-007-0072-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016990478", 
          "https://doi.org/10.1007/s00180-007-0072-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020885230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.061317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023674769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.061317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023674769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2006.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029406893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tpb.2007.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033862996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.059923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039098422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.059923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039098422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-006-9391-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042853180", 
          "https://doi.org/10.1007/s11222-006-9391-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045116249", 
          "https://doi.org/10.1038/nrg1318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045116249", 
          "https://doi.org/10.1038/nrg1318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/f05-224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048396101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2006.02994.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048622172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048931726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10592-005-9098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049775591", 
          "https://doi.org/10.1007/s10592-005-9098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10592-005-9098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049775591", 
          "https://doi.org/10.1007/s10592-005-9098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-006-9161-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051348821", 
          "https://doi.org/10.1007/s11538-006-9161-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-8286.2005.01031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051723895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053304906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s001667230100502x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053882867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s001667230100502x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053882867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1995.10476572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214505000000664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157489306777011932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069217404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075016616", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075238023", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075259850", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075335894", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.\nRESULTS: We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.\nCONCLUSION: The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-539", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4247660", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations", 
    "pagination": "539", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ebf62b80b12dbb20519eee134762dd2bdc678db4acd01108dcfa31b66ba4e863"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19087322"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-539"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049532772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-539", 
      "https://app.dimensions.ai/details/publication/pub.1049532772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-9-539"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-539'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      77 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-539 schema:about N0959d159dbf541af9880c494cf2d8a1d
2 N13d40735168b46518c51737d46e84d33
3 N17edcbb73ff240ff934156a4409669a8
4 N2a5f9c3c31cd43b3aee82dff8204504d
5 N3288690b66a7454e9730888dfb7ca599
6 N5692592dfb4f445ab9762d6c67804d0d
7 N7441ce27c259483db6a421f251ee3775
8 N76715ce0e0464100bb86ccce446aefc2
9 N82eb2c2f836e48b995126cc092573e74
10 N86c8ff07953d4d7aa2bfdd61066421ca
11 N8ac26cd970284a68a81150a3f4d497b8
12 N90aa0b3938974e40b523ee670f0e0fde
13 Nd30a98fe8b464f3ab297d6b267c260ce
14 Nda961c17c537476894ea0e8f7465a4b5
15 Nfa8e3be07c1b4142b7a4414b689f3f06
16 anzsrc-for:01
17 anzsrc-for:0104
18 schema:author N42cac2b99ed440f79eeab4a801ff5787
19 schema:citation sg:pub.10.1007/s00180-007-0072-x
20 sg:pub.10.1007/s10592-005-9098-1
21 sg:pub.10.1007/s11222-006-9391-y
22 sg:pub.10.1007/s11538-006-9161-1
23 sg:pub.10.1038/nrg1318
24 sg:pub.10.1038/nrg1904
25 sg:pub.10.1186/1471-2105-9-421
26 https://app.dimensions.ai/details/publication/pub.1074647594
27 https://app.dimensions.ai/details/publication/pub.1075016616
28 https://app.dimensions.ai/details/publication/pub.1075238023
29 https://app.dimensions.ai/details/publication/pub.1075259850
30 https://app.dimensions.ai/details/publication/pub.1075335894
31 https://doi.org/10.1016/j.mbs.2006.09.015
32 https://doi.org/10.1016/j.tpb.2007.06.004
33 https://doi.org/10.1017/s001667230100502x
34 https://doi.org/10.1080/01621459.1995.10476572
35 https://doi.org/10.1093/bioinformatics/bth250
36 https://doi.org/10.1093/bioinformatics/btn136
37 https://doi.org/10.1093/bioinformatics/btn419
38 https://doi.org/10.1109/tpami.2008.53
39 https://doi.org/10.1111/j.1365-294x.2006.02994.x
40 https://doi.org/10.1111/j.1471-8286.2005.01031.x
41 https://doi.org/10.1126/science.1078311
42 https://doi.org/10.1128/jcm.43.9.4665-4673.2005
43 https://doi.org/10.1139/f05-224
44 https://doi.org/10.1198/016214505000000664
45 https://doi.org/10.1371/journal.pgen.0030185
46 https://doi.org/10.1534/genetics.104.033803
47 https://doi.org/10.1534/genetics.106.059923
48 https://doi.org/10.1534/genetics.106.061317
49 https://doi.org/10.1534/genetics.107.072371
50 https://doi.org/10.2174/157489306777011932
51 https://doi.org/10.2202/1544-6115.1303
52 schema:datePublished 2008-12
53 schema:datePublishedReg 2008-12-01
54 schema:description BACKGROUND: During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. RESULTS: We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. CONCLUSION: The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf Nbf60603c51d742aabab2e2d789632920
59 Nfc8f99719ef44e5e9f77c5ea1aed5726
60 sg:journal.1023786
61 schema:name Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations
62 schema:pagination 539
63 schema:productId N170703e8d32e4b1b9bc5dbbbbfa96df6
64 Nb4d4493d373842ef9e62751eb39d3031
65 Nbc6a2adb7bc047ea9ec7c60bc2497a05
66 Nd3d000d54efe4940a4a0566f0e00ec6f
67 Ndcb195cd0b904a7b930c5de1b19abb22
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532772
69 https://doi.org/10.1186/1471-2105-9-539
70 schema:sdDatePublished 2019-04-11T10:33
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nd3433f3c5b1543a69f18c711e04ee05d
73 schema:url https://link.springer.com/10.1186%2F1471-2105-9-539
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0959d159dbf541af9880c494cf2d8a1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Databases, Genetic
79 rdf:type schema:DefinedTerm
80 N0fca4efa22d04e338e08976c3ea39a16 rdf:first sg:person.0753733617.28
81 rdf:rest N8aee590d90e643e5bdf65c0f9639f309
82 N13d40735168b46518c51737d46e84d33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Computational Biology
84 rdf:type schema:DefinedTerm
85 N170703e8d32e4b1b9bc5dbbbbfa96df6 schema:name pubmed_id
86 schema:value 19087322
87 rdf:type schema:PropertyValue
88 N17edcbb73ff240ff934156a4409669a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Models, Genetic
90 rdf:type schema:DefinedTerm
91 N2a5f9c3c31cd43b3aee82dff8204504d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Population
93 rdf:type schema:DefinedTerm
94 N3288690b66a7454e9730888dfb7ca599 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Alleles
96 rdf:type schema:DefinedTerm
97 N42cac2b99ed440f79eeab4a801ff5787 rdf:first sg:person.01125514227.61
98 rdf:rest N0fca4efa22d04e338e08976c3ea39a16
99 N48f4ae7f384846c788bcd789c927213d rdf:first sg:person.01364107431.03
100 rdf:rest rdf:nil
101 N5692592dfb4f445ab9762d6c67804d0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Genetics, Population
103 rdf:type schema:DefinedTerm
104 N7441ce27c259483db6a421f251ee3775 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Bayes Theorem
106 rdf:type schema:DefinedTerm
107 N76715ce0e0464100bb86ccce446aefc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genetic Linkage
109 rdf:type schema:DefinedTerm
110 N82eb2c2f836e48b995126cc092573e74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Algorithms
112 rdf:type schema:DefinedTerm
113 N86c8ff07953d4d7aa2bfdd61066421ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Genetic Structures
115 rdf:type schema:DefinedTerm
116 N8ac26cd970284a68a81150a3f4d497b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Stochastic Processes
118 rdf:type schema:DefinedTerm
119 N8aee590d90e643e5bdf65c0f9639f309 rdf:first sg:person.0752104153.37
120 rdf:rest N48f4ae7f384846c788bcd789c927213d
121 N90aa0b3938974e40b523ee670f0e0fde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Sequence Analysis, DNA
123 rdf:type schema:DefinedTerm
124 Nb4d4493d373842ef9e62751eb39d3031 schema:name doi
125 schema:value 10.1186/1471-2105-9-539
126 rdf:type schema:PropertyValue
127 Nbc6a2adb7bc047ea9ec7c60bc2497a05 schema:name dimensions_id
128 schema:value pub.1049532772
129 rdf:type schema:PropertyValue
130 Nbf60603c51d742aabab2e2d789632920 schema:volumeNumber 9
131 rdf:type schema:PublicationVolume
132 Nd30a98fe8b464f3ab297d6b267c260ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 Nd3433f3c5b1543a69f18c711e04ee05d schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Nd3d000d54efe4940a4a0566f0e00ec6f schema:name readcube_id
138 schema:value ebf62b80b12dbb20519eee134762dd2bdc678db4acd01108dcfa31b66ba4e863
139 rdf:type schema:PropertyValue
140 Nda961c17c537476894ea0e8f7465a4b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Cluster Analysis
142 rdf:type schema:DefinedTerm
143 Ndcb195cd0b904a7b930c5de1b19abb22 schema:name nlm_unique_id
144 schema:value 100965194
145 rdf:type schema:PropertyValue
146 Nfa8e3be07c1b4142b7a4414b689f3f06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Software
148 rdf:type schema:DefinedTerm
149 Nfc8f99719ef44e5e9f77c5ea1aed5726 schema:issueNumber 1
150 rdf:type schema:PublicationIssue
151 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
152 schema:name Mathematical Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
155 schema:name Statistics
156 rdf:type schema:DefinedTerm
157 sg:grant.4247660 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-539
158 rdf:type schema:MonetaryGrant
159 sg:journal.1023786 schema:issn 1471-2105
160 schema:name BMC Bioinformatics
161 rdf:type schema:Periodical
162 sg:person.01125514227.61 schema:affiliation https://www.grid.ac/institutes/grid.13797.3b
163 schema:familyName Corander
164 schema:givenName Jukka
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61
166 rdf:type schema:Person
167 sg:person.01364107431.03 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
168 schema:familyName Tang
169 schema:givenName Jing
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364107431.03
171 rdf:type schema:Person
172 sg:person.0752104153.37 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
173 schema:familyName Sirén
174 schema:givenName Jukka
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752104153.37
176 rdf:type schema:Person
177 sg:person.0753733617.28 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
178 schema:familyName Marttinen
179 schema:givenName Pekka
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28
181 rdf:type schema:Person
182 sg:pub.10.1007/s00180-007-0072-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016990478
183 https://doi.org/10.1007/s00180-007-0072-x
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s10592-005-9098-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049775591
186 https://doi.org/10.1007/s10592-005-9098-1
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s11222-006-9391-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042853180
189 https://doi.org/10.1007/s11222-006-9391-y
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s11538-006-9161-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051348821
192 https://doi.org/10.1007/s11538-006-9161-1
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrg1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045116249
195 https://doi.org/10.1038/nrg1318
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nrg1904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008780244
198 https://doi.org/10.1038/nrg1904
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1471-2105-9-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008209350
201 https://doi.org/10.1186/1471-2105-9-421
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1075016616 schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1075238023 schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1075259850 schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1075335894 schema:CreativeWork
208 https://doi.org/10.1016/j.mbs.2006.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029406893
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.tpb.2007.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033862996
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1017/s001667230100502x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053882867
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1080/01621459.1995.10476572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304855
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/bth250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016574435
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/btn136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008342312
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/bioinformatics/btn419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053304906
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/tpami.2008.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743656
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/j.1365-294x.2006.02994.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048622172
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/j.1471-8286.2005.01031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051723895
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.1078311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005962126
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1128/jcm.43.9.4665-4673.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915617
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1139/f05-224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048396101
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1198/016214505000000664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198398
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1371/journal.pgen.0030185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020885230
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1534/genetics.104.033803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006529040
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1534/genetics.106.059923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039098422
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1534/genetics.106.061317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023674769
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1534/genetics.107.072371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015610360
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2174/157489306777011932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069217404
247 rdf:type schema:CreativeWork
248 https://doi.org/10.2202/1544-6115.1303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048931726
249 rdf:type schema:CreativeWork
250 https://www.grid.ac/institutes/grid.13797.3b schema:alternateName Åbo Akademi University
251 schema:name Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University, Fin-20500, Åbo, Finland
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
254 schema:name Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Fin-00014, Finland
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...