RNAalifold: improved consensus structure prediction for RNA alignments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Stephan H Bernhart, Ivo L Hofacker, Sebastian Will, Andreas R Gruber, Peter F Stadler

ABSTRACT

BACKGROUND: The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach. RESULTS: We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets. CONCLUSION: The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers. More... »

PAGES

474

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-474

DOI

http://dx.doi.org/10.1186/1471-2105-9-474

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041611297

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19014431


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, H\u00e4rtelstrasse 16-18, D-04107, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernhart", 
        "givenName": "Stephan H", 
        "id": "sg:person.0753447607.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753447607.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstrasse 17, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofacker", 
        "givenName": "Ivo L", 
        "id": "sg:person.01222322364.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-K\u00f6hler-Allee, Geb. 106, D-79110, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Will", 
        "givenName": "Sebastian", 
        "id": "sg:person.01172262765.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172262765.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstrasse 17, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gruber", 
        "givenName": "Andreas R", 
        "id": "sg:person.01275342251.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275342251.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santa Fe Institute", 
          "id": "https://www.grid.ac/institutes/grid.209665.e", 
          "name": [
            "Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, H\u00e4rtelstrasse 16-18, D-04107, Leipzig, Germany", 
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstrasse 17, A-1090, Vienna, Austria", 
            "RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology (IZI) Perlickstrasse 1, D-04103, Leipzig, Germany", 
            "The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, New Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Peter F", 
        "id": "sg:person.0664150133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jez.b.21130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000919862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0712329105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/9.1.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004222010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005913886", 
          "https://doi.org/10.1038/nature05874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005997041", 
          "https://doi.org/10.1186/1471-2105-8-366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2006.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007055430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007274626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.215407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007388076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009861484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010914847", 
          "https://doi.org/10.1186/1471-2105-7-400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013478171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00308-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013627034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014962641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015204321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409169102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016701541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025361639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025378257", 
          "https://doi.org/10.1186/1471-2105-9-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027407930", 
          "https://doi.org/10.1186/1471-2105-9-122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027407930", 
          "https://doi.org/10.1186/1471-2105-9-122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029580198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.19.8777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029804271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030952580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00818163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032495505", 
          "https://doi.org/10.1007/bf00818163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(99)00010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032574287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036166865", 
          "https://doi.org/10.1186/1471-2105-9-340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036743347", 
          "https://doi.org/10.1186/1471-2105-9-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036743347", 
          "https://doi.org/10.1186/1471-2105-9-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(99)00013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038438236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042367741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042599038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2164906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042607648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824773", 
          "https://doi.org/10.1186/1471-2105-8-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824773", 
          "https://doi.org/10.1186/1471-2105-8-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045744598", 
          "https://doi.org/10.1186/1471-2105-5-140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045744598", 
          "https://doi.org/10.1186/1471-2105-5-140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002490050023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047249964", 
          "https://doi.org/10.1007/s002490050023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048566346", 
          "https://doi.org/10.1186/1471-2105-6-73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048914023", 
          "https://doi.org/10.1186/1471-2105-4-44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052847323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053620023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0145048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csb.2003.1227315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077183453"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach.\nRESULTS: We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets.\nCONCLUSION: The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-474", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580380", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "RNAalifold: improved consensus structure prediction for RNA alignments", 
    "pagination": "474", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c638c9394bf4d0a6e2d8a1cb352bc6a5e2e7d0a6577a03d825f9e578ebd5d6b2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19014431"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-474"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041611297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-474", 
      "https://app.dimensions.ai/details/publication/pub.1041611297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-9-474"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-474'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-474'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-474'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-474'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      79 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-474 schema:about N503cee09ff3d4fac9f49dfb48f604c2f
2 N5917b28e3ec04d6ebee2e5df812a23e7
3 N634cd2ce00024cb79a7394caa62c3c71
4 N6972efc9bbeb4460a4a1aa9ef553a655
5 N6da1efdab0be4363b316db295f658c2b
6 N7afa07e095964141a5913fb5d57fa73a
7 Nd8ebc858f9de47029c085ba52b18dfb2
8 Nee9083b7e2c44c968f2044128f5ec0ab
9 anzsrc-for:01
10 anzsrc-for:0104
11 schema:author N86c655a863c74b449d9dcf3b0addb00e
12 schema:citation sg:pub.10.1007/bf00818163
13 sg:pub.10.1007/s002490050023
14 sg:pub.10.1038/nature05874
15 sg:pub.10.1186/1471-2105-4-44
16 sg:pub.10.1186/1471-2105-5-140
17 sg:pub.10.1186/1471-2105-6-73
18 sg:pub.10.1186/1471-2105-7-400
19 sg:pub.10.1186/1471-2105-8-130
20 sg:pub.10.1186/1471-2105-8-366
21 sg:pub.10.1186/1471-2105-9-122
22 sg:pub.10.1186/1471-2105-9-219
23 sg:pub.10.1186/1471-2105-9-248
24 sg:pub.10.1186/1471-2105-9-340
25 https://doi.org/10.1002/jez.b.21130
26 https://doi.org/10.1016/j.jmb.2004.07.018
27 https://doi.org/10.1016/j.sbi.2006.05.010
28 https://doi.org/10.1016/s0022-2836(02)00308-x
29 https://doi.org/10.1016/s0097-8485(99)00010-8
30 https://doi.org/10.1016/s0097-8485(99)00013-3
31 https://doi.org/10.1073/pnas.0409169102
32 https://doi.org/10.1073/pnas.0712329105
33 https://doi.org/10.1073/pnas.90.19.8777
34 https://doi.org/10.1093/bioinformatics/bti550
35 https://doi.org/10.1093/bioinformatics/bti577
36 https://doi.org/10.1093/bioinformatics/btk008
37 https://doi.org/10.1093/bioinformatics/btl023
38 https://doi.org/10.1093/bioinformatics/btl142
39 https://doi.org/10.1093/bioinformatics/btl636
40 https://doi.org/10.1093/bioinformatics/btm223
41 https://doi.org/10.1093/nar/9.1.133
42 https://doi.org/10.1093/nar/gkg500
43 https://doi.org/10.1093/nar/gkg614
44 https://doi.org/10.1093/nar/gkh065
45 https://doi.org/10.1093/nar/gki081
46 https://doi.org/10.1093/nar/gkn544
47 https://doi.org/10.1109/csb.2003.1227315
48 https://doi.org/10.1126/science.1112014
49 https://doi.org/10.1137/0145048
50 https://doi.org/10.1261/rna.215407
51 https://doi.org/10.1261/rna.2164906
52 https://doi.org/10.1371/journal.pcbi.0030065
53 https://doi.org/10.1371/journal.pcbi.0030193
54 schema:datePublished 2008-12
55 schema:datePublishedReg 2008-12-01
56 schema:description BACKGROUND: The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach. RESULTS: We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets. CONCLUSION: The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N083c6edc735d4ee989190e67e84a1772
61 N4194ca48fb8a4e4db3e28d2cf5f5a3e2
62 sg:journal.1023786
63 schema:name RNAalifold: improved consensus structure prediction for RNA alignments
64 schema:pagination 474
65 schema:productId N1cb37a1fd7574dd2b0b8366cc50be796
66 N46b1983a181247c9b576a0f5dc370b75
67 N47b503792f72471ba33fc8751adfc702
68 N5143dc064f73471e8795c4b7cf23b879
69 N51986676cabc44c0808e1bab295667a2
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041611297
71 https://doi.org/10.1186/1471-2105-9-474
72 schema:sdDatePublished 2019-04-10T14:59
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N726e9c7b71644d69b363d1414415088e
75 schema:url http://link.springer.com/10.1186%2F1471-2105-9-474
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N083c6edc735d4ee989190e67e84a1772 schema:volumeNumber 9
80 rdf:type schema:PublicationVolume
81 N0cceeb296c594119b79089fddf4e1404 rdf:first sg:person.01275342251.18
82 rdf:rest Nbbdef31c80bb452cb4ed61d49bffca02
83 N1cb37a1fd7574dd2b0b8366cc50be796 schema:name pubmed_id
84 schema:value 19014431
85 rdf:type schema:PropertyValue
86 N321bf22c63b348058b3235a2908ede50 rdf:first sg:person.01222322364.52
87 rdf:rest Nfdb6b8a53e3144f2949f99234ae9f8e2
88 N4194ca48fb8a4e4db3e28d2cf5f5a3e2 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 N46b1983a181247c9b576a0f5dc370b75 schema:name readcube_id
91 schema:value c638c9394bf4d0a6e2d8a1cb352bc6a5e2e7d0a6577a03d825f9e578ebd5d6b2
92 rdf:type schema:PropertyValue
93 N47b503792f72471ba33fc8751adfc702 schema:name nlm_unique_id
94 schema:value 100965194
95 rdf:type schema:PropertyValue
96 N503cee09ff3d4fac9f49dfb48f604c2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Amino Acid Sequence
98 rdf:type schema:DefinedTerm
99 N5143dc064f73471e8795c4b7cf23b879 schema:name dimensions_id
100 schema:value pub.1041611297
101 rdf:type schema:PropertyValue
102 N51986676cabc44c0808e1bab295667a2 schema:name doi
103 schema:value 10.1186/1471-2105-9-474
104 rdf:type schema:PropertyValue
105 N5917b28e3ec04d6ebee2e5df812a23e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Sequence Alignment
107 rdf:type schema:DefinedTerm
108 N634cd2ce00024cb79a7394caa62c3c71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Nucleic Acid Conformation
110 rdf:type schema:DefinedTerm
111 N6972efc9bbeb4460a4a1aa9ef553a655 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Algorithms
113 rdf:type schema:DefinedTerm
114 N6da1efdab0be4363b316db295f658c2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Software
116 rdf:type schema:DefinedTerm
117 N726e9c7b71644d69b363d1414415088e schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N7afa07e095964141a5913fb5d57fa73a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Models, Chemical
121 rdf:type schema:DefinedTerm
122 N86c655a863c74b449d9dcf3b0addb00e rdf:first sg:person.0753447607.17
123 rdf:rest N321bf22c63b348058b3235a2908ede50
124 Nbbdef31c80bb452cb4ed61d49bffca02 rdf:first sg:person.0664150133.70
125 rdf:rest rdf:nil
126 Nd8ebc858f9de47029c085ba52b18dfb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name RNA
128 rdf:type schema:DefinedTerm
129 Nee9083b7e2c44c968f2044128f5ec0ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Computational Biology
131 rdf:type schema:DefinedTerm
132 Nfdb6b8a53e3144f2949f99234ae9f8e2 rdf:first sg:person.01172262765.67
133 rdf:rest N0cceeb296c594119b79089fddf4e1404
134 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
135 schema:name Mathematical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
138 schema:name Statistics
139 rdf:type schema:DefinedTerm
140 sg:grant.7580380 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-474
141 rdf:type schema:MonetaryGrant
142 sg:journal.1023786 schema:issn 1471-2105
143 schema:name BMC Bioinformatics
144 rdf:type schema:Periodical
145 sg:person.01172262765.67 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
146 schema:familyName Will
147 schema:givenName Sebastian
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172262765.67
149 rdf:type schema:Person
150 sg:person.01222322364.52 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
151 schema:familyName Hofacker
152 schema:givenName Ivo L
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52
154 rdf:type schema:Person
155 sg:person.01275342251.18 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
156 schema:familyName Gruber
157 schema:givenName Andreas R
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275342251.18
159 rdf:type schema:Person
160 sg:person.0664150133.70 schema:affiliation https://www.grid.ac/institutes/grid.209665.e
161 schema:familyName Stadler
162 schema:givenName Peter F
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70
164 rdf:type schema:Person
165 sg:person.0753447607.17 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
166 schema:familyName Bernhart
167 schema:givenName Stephan H
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753447607.17
169 rdf:type schema:Person
170 sg:pub.10.1007/bf00818163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495505
171 https://doi.org/10.1007/bf00818163
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s002490050023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047249964
174 https://doi.org/10.1007/s002490050023
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature05874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005913886
177 https://doi.org/10.1038/nature05874
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1471-2105-4-44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048914023
180 https://doi.org/10.1186/1471-2105-4-44
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1471-2105-5-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045744598
183 https://doi.org/10.1186/1471-2105-5-140
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1471-2105-6-73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048566346
186 https://doi.org/10.1186/1471-2105-6-73
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/1471-2105-7-400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010914847
189 https://doi.org/10.1186/1471-2105-7-400
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2105-8-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824773
192 https://doi.org/10.1186/1471-2105-8-130
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-8-366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005997041
195 https://doi.org/10.1186/1471-2105-8-366
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2105-9-122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027407930
198 https://doi.org/10.1186/1471-2105-9-122
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1471-2105-9-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036743347
201 https://doi.org/10.1186/1471-2105-9-219
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2105-9-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025378257
204 https://doi.org/10.1186/1471-2105-9-248
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2105-9-340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036166865
207 https://doi.org/10.1186/1471-2105-9-340
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1002/jez.b.21130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000919862
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.jmb.2004.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030952580
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.sbi.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869749
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0022-2836(02)00308-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013627034
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0097-8485(99)00010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032574287
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0097-8485(99)00013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038438236
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.0409169102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016701541
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.0712329105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002389179
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.90.19.8777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029804271
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/bioinformatics/bti550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009861484
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/bioinformatics/bti577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007274626
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/bioinformatics/btk008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620023
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/bioinformatics/btl023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042367741
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/bioinformatics/btl142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025361639
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/btl636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013478171
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/bioinformatics/btm223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824599
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/nar/9.1.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004222010
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/nar/gkg500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007055430
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/nar/gkg614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015204321
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/nar/gkh065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029580198
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/nar/gki081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286749
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/nar/gkn544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720598
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1109/csb.2003.1227315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077183453
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1126/science.1112014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052847323
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1137/0145048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840393
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1261/rna.215407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007388076
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1261/rna.2164906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042607648
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1371/journal.pcbi.0030065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042599038
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1371/journal.pcbi.0030193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014962641
266 rdf:type schema:CreativeWork
267 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
268 schema:name Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090, Vienna, Austria
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.209665.e schema:alternateName Santa Fe Institute
271 schema:name Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany
272 Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090, Vienna, Austria
273 RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology (IZI) Perlickstrasse 1, D-04103, Leipzig, Germany
274 The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, New Mexico
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.5963.9 schema:alternateName University of Freiburg
277 schema:name Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee, Geb. 106, D-79110, Freiburg, Germany
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.9647.c schema:alternateName Leipzig University
280 schema:name Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...