RNAalifold: improved consensus structure prediction for RNA alignments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Stephan H Bernhart, Ivo L Hofacker, Sebastian Will, Andreas R Gruber, Peter F Stadler

ABSTRACT

BACKGROUND: The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach. RESULTS: We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets. CONCLUSION: The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers. More... »

PAGES

474

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-474

DOI

http://dx.doi.org/10.1186/1471-2105-9-474

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041611297

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19014431


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, H\u00e4rtelstrasse 16-18, D-04107, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernhart", 
        "givenName": "Stephan H", 
        "id": "sg:person.0753447607.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753447607.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstrasse 17, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofacker", 
        "givenName": "Ivo L", 
        "id": "sg:person.01222322364.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-K\u00f6hler-Allee, Geb. 106, D-79110, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Will", 
        "givenName": "Sebastian", 
        "id": "sg:person.01172262765.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172262765.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstrasse 17, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gruber", 
        "givenName": "Andreas R", 
        "id": "sg:person.01275342251.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275342251.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santa Fe Institute", 
          "id": "https://www.grid.ac/institutes/grid.209665.e", 
          "name": [
            "Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, H\u00e4rtelstrasse 16-18, D-04107, Leipzig, Germany", 
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstrasse 17, A-1090, Vienna, Austria", 
            "RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology (IZI) Perlickstrasse 1, D-04103, Leipzig, Germany", 
            "The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, New Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Peter F", 
        "id": "sg:person.0664150133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jez.b.21130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000919862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0712329105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/9.1.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004222010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005913886", 
          "https://doi.org/10.1038/nature05874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005997041", 
          "https://doi.org/10.1186/1471-2105-8-366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2006.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007055430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007274626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.215407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007388076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009861484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010914847", 
          "https://doi.org/10.1186/1471-2105-7-400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013478171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00308-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013627034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014962641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015204321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409169102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016701541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025361639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025378257", 
          "https://doi.org/10.1186/1471-2105-9-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027407930", 
          "https://doi.org/10.1186/1471-2105-9-122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027407930", 
          "https://doi.org/10.1186/1471-2105-9-122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029580198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.19.8777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029804271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030952580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00818163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032495505", 
          "https://doi.org/10.1007/bf00818163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(99)00010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032574287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036166865", 
          "https://doi.org/10.1186/1471-2105-9-340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036743347", 
          "https://doi.org/10.1186/1471-2105-9-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036743347", 
          "https://doi.org/10.1186/1471-2105-9-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(99)00013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038438236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042367741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042599038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2164906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042607648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824773", 
          "https://doi.org/10.1186/1471-2105-8-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824773", 
          "https://doi.org/10.1186/1471-2105-8-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045744598", 
          "https://doi.org/10.1186/1471-2105-5-140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045744598", 
          "https://doi.org/10.1186/1471-2105-5-140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002490050023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047249964", 
          "https://doi.org/10.1007/s002490050023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048566346", 
          "https://doi.org/10.1186/1471-2105-6-73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048914023", 
          "https://doi.org/10.1186/1471-2105-4-44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052847323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053620023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0145048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csb.2003.1227315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077183453"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach.\nRESULTS: We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets.\nCONCLUSION: The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-474", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580380", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "RNAalifold: improved consensus structure prediction for RNA alignments", 
    "pagination": "474", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c638c9394bf4d0a6e2d8a1cb352bc6a5e2e7d0a6577a03d825f9e578ebd5d6b2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19014431"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-474"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041611297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-474", 
      "https://app.dimensions.ai/details/publication/pub.1041611297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-9-474"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-474'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-474'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-474'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-474'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      79 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-474 schema:about N059929e057e348d3a80d603a02ae86fb
2 N0fa3e9c45769414289d5ed3022402190
3 N17367ad9693c4571a267bd6bac4ce623
4 N4802a151240441e6aff327a4a5a5deee
5 N6fe97566097047578d6d85498e764c5d
6 N74a9330390624918a74fa1393fda3112
7 N78331176a3a549409d053577a76ba794
8 N9b0f218206a6414d935338c5b63d1c79
9 anzsrc-for:01
10 anzsrc-for:0104
11 schema:author Nc6f1ecfeb3e94be188217cc26bbd892b
12 schema:citation sg:pub.10.1007/bf00818163
13 sg:pub.10.1007/s002490050023
14 sg:pub.10.1038/nature05874
15 sg:pub.10.1186/1471-2105-4-44
16 sg:pub.10.1186/1471-2105-5-140
17 sg:pub.10.1186/1471-2105-6-73
18 sg:pub.10.1186/1471-2105-7-400
19 sg:pub.10.1186/1471-2105-8-130
20 sg:pub.10.1186/1471-2105-8-366
21 sg:pub.10.1186/1471-2105-9-122
22 sg:pub.10.1186/1471-2105-9-219
23 sg:pub.10.1186/1471-2105-9-248
24 sg:pub.10.1186/1471-2105-9-340
25 https://doi.org/10.1002/jez.b.21130
26 https://doi.org/10.1016/j.jmb.2004.07.018
27 https://doi.org/10.1016/j.sbi.2006.05.010
28 https://doi.org/10.1016/s0022-2836(02)00308-x
29 https://doi.org/10.1016/s0097-8485(99)00010-8
30 https://doi.org/10.1016/s0097-8485(99)00013-3
31 https://doi.org/10.1073/pnas.0409169102
32 https://doi.org/10.1073/pnas.0712329105
33 https://doi.org/10.1073/pnas.90.19.8777
34 https://doi.org/10.1093/bioinformatics/bti550
35 https://doi.org/10.1093/bioinformatics/bti577
36 https://doi.org/10.1093/bioinformatics/btk008
37 https://doi.org/10.1093/bioinformatics/btl023
38 https://doi.org/10.1093/bioinformatics/btl142
39 https://doi.org/10.1093/bioinformatics/btl636
40 https://doi.org/10.1093/bioinformatics/btm223
41 https://doi.org/10.1093/nar/9.1.133
42 https://doi.org/10.1093/nar/gkg500
43 https://doi.org/10.1093/nar/gkg614
44 https://doi.org/10.1093/nar/gkh065
45 https://doi.org/10.1093/nar/gki081
46 https://doi.org/10.1093/nar/gkn544
47 https://doi.org/10.1109/csb.2003.1227315
48 https://doi.org/10.1126/science.1112014
49 https://doi.org/10.1137/0145048
50 https://doi.org/10.1261/rna.215407
51 https://doi.org/10.1261/rna.2164906
52 https://doi.org/10.1371/journal.pcbi.0030065
53 https://doi.org/10.1371/journal.pcbi.0030193
54 schema:datePublished 2008-12
55 schema:datePublishedReg 2008-12-01
56 schema:description BACKGROUND: The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach. RESULTS: We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets. CONCLUSION: The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N76ede6a3851f48e78e4b91a0ed40c401
61 N81b4e18a2fce4d169d8d2d315dd4a8d3
62 sg:journal.1023786
63 schema:name RNAalifold: improved consensus structure prediction for RNA alignments
64 schema:pagination 474
65 schema:productId N1a79c3c313d749419ee3f1dcba199c58
66 N519e9249e05346ed986cb96eede9bd80
67 N6d40669141c5408384ca86055a99ace6
68 N98f773bc64214b4581976d86ca5c6c4b
69 Nc517edccdc3a44828e4b377528e9b179
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041611297
71 https://doi.org/10.1186/1471-2105-9-474
72 schema:sdDatePublished 2019-04-10T14:59
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Naaed3c57c43d4e48ba29535180be0459
75 schema:url http://link.springer.com/10.1186%2F1471-2105-9-474
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N059929e057e348d3a80d603a02ae86fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Models, Chemical
81 rdf:type schema:DefinedTerm
82 N0fa3e9c45769414289d5ed3022402190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Software
84 rdf:type schema:DefinedTerm
85 N145e5cd2f34b4df990adf21256f71dc7 rdf:first sg:person.01172262765.67
86 rdf:rest Ne99cdd7d278a438ca754d2f0ccd5624a
87 N17367ad9693c4571a267bd6bac4ce623 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Amino Acid Sequence
89 rdf:type schema:DefinedTerm
90 N1a79c3c313d749419ee3f1dcba199c58 schema:name doi
91 schema:value 10.1186/1471-2105-9-474
92 rdf:type schema:PropertyValue
93 N2df52df14e554babbc0caf750d14d2d6 rdf:first sg:person.01222322364.52
94 rdf:rest N145e5cd2f34b4df990adf21256f71dc7
95 N4802a151240441e6aff327a4a5a5deee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Nucleic Acid Conformation
97 rdf:type schema:DefinedTerm
98 N519e9249e05346ed986cb96eede9bd80 schema:name nlm_unique_id
99 schema:value 100965194
100 rdf:type schema:PropertyValue
101 N6d40669141c5408384ca86055a99ace6 schema:name dimensions_id
102 schema:value pub.1041611297
103 rdf:type schema:PropertyValue
104 N6fe97566097047578d6d85498e764c5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Computational Biology
106 rdf:type schema:DefinedTerm
107 N74a9330390624918a74fa1393fda3112 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Sequence Alignment
109 rdf:type schema:DefinedTerm
110 N76ede6a3851f48e78e4b91a0ed40c401 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N78331176a3a549409d053577a76ba794 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name RNA
114 rdf:type schema:DefinedTerm
115 N81b4e18a2fce4d169d8d2d315dd4a8d3 schema:volumeNumber 9
116 rdf:type schema:PublicationVolume
117 N98f773bc64214b4581976d86ca5c6c4b schema:name readcube_id
118 schema:value c638c9394bf4d0a6e2d8a1cb352bc6a5e2e7d0a6577a03d825f9e578ebd5d6b2
119 rdf:type schema:PropertyValue
120 N9b0f218206a6414d935338c5b63d1c79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Algorithms
122 rdf:type schema:DefinedTerm
123 Naaed3c57c43d4e48ba29535180be0459 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nacbf6cb29b224c9b954ae1b4cb22f094 rdf:first sg:person.0664150133.70
126 rdf:rest rdf:nil
127 Nc517edccdc3a44828e4b377528e9b179 schema:name pubmed_id
128 schema:value 19014431
129 rdf:type schema:PropertyValue
130 Nc6f1ecfeb3e94be188217cc26bbd892b rdf:first sg:person.0753447607.17
131 rdf:rest N2df52df14e554babbc0caf750d14d2d6
132 Ne99cdd7d278a438ca754d2f0ccd5624a rdf:first sg:person.01275342251.18
133 rdf:rest Nacbf6cb29b224c9b954ae1b4cb22f094
134 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
135 schema:name Mathematical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
138 schema:name Statistics
139 rdf:type schema:DefinedTerm
140 sg:grant.7580380 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-474
141 rdf:type schema:MonetaryGrant
142 sg:journal.1023786 schema:issn 1471-2105
143 schema:name BMC Bioinformatics
144 rdf:type schema:Periodical
145 sg:person.01172262765.67 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
146 schema:familyName Will
147 schema:givenName Sebastian
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172262765.67
149 rdf:type schema:Person
150 sg:person.01222322364.52 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
151 schema:familyName Hofacker
152 schema:givenName Ivo L
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52
154 rdf:type schema:Person
155 sg:person.01275342251.18 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
156 schema:familyName Gruber
157 schema:givenName Andreas R
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275342251.18
159 rdf:type schema:Person
160 sg:person.0664150133.70 schema:affiliation https://www.grid.ac/institutes/grid.209665.e
161 schema:familyName Stadler
162 schema:givenName Peter F
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70
164 rdf:type schema:Person
165 sg:person.0753447607.17 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
166 schema:familyName Bernhart
167 schema:givenName Stephan H
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753447607.17
169 rdf:type schema:Person
170 sg:pub.10.1007/bf00818163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495505
171 https://doi.org/10.1007/bf00818163
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s002490050023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047249964
174 https://doi.org/10.1007/s002490050023
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature05874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005913886
177 https://doi.org/10.1038/nature05874
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1471-2105-4-44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048914023
180 https://doi.org/10.1186/1471-2105-4-44
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1471-2105-5-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045744598
183 https://doi.org/10.1186/1471-2105-5-140
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1471-2105-6-73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048566346
186 https://doi.org/10.1186/1471-2105-6-73
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/1471-2105-7-400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010914847
189 https://doi.org/10.1186/1471-2105-7-400
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2105-8-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824773
192 https://doi.org/10.1186/1471-2105-8-130
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-8-366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005997041
195 https://doi.org/10.1186/1471-2105-8-366
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2105-9-122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027407930
198 https://doi.org/10.1186/1471-2105-9-122
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1471-2105-9-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036743347
201 https://doi.org/10.1186/1471-2105-9-219
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2105-9-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025378257
204 https://doi.org/10.1186/1471-2105-9-248
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2105-9-340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036166865
207 https://doi.org/10.1186/1471-2105-9-340
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1002/jez.b.21130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000919862
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.jmb.2004.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030952580
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.sbi.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869749
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0022-2836(02)00308-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013627034
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0097-8485(99)00010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032574287
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0097-8485(99)00013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038438236
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.0409169102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016701541
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.0712329105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002389179
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.90.19.8777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029804271
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/bioinformatics/bti550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009861484
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/bioinformatics/bti577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007274626
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/bioinformatics/btk008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620023
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/bioinformatics/btl023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042367741
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/bioinformatics/btl142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025361639
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/btl636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013478171
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/bioinformatics/btm223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824599
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/nar/9.1.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004222010
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/nar/gkg500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007055430
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/nar/gkg614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015204321
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/nar/gkh065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029580198
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/nar/gki081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286749
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/nar/gkn544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720598
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1109/csb.2003.1227315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077183453
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1126/science.1112014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052847323
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1137/0145048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840393
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1261/rna.215407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007388076
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1261/rna.2164906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042607648
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1371/journal.pcbi.0030065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042599038
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1371/journal.pcbi.0030193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014962641
266 rdf:type schema:CreativeWork
267 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
268 schema:name Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090, Vienna, Austria
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.209665.e schema:alternateName Santa Fe Institute
271 schema:name Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany
272 Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090, Vienna, Austria
273 RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology (IZI) Perlickstrasse 1, D-04103, Leipzig, Germany
274 The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, New Mexico
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.5963.9 schema:alternateName University of Freiburg
277 schema:name Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee, Geb. 106, D-79110, Freiburg, Germany
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.9647.c schema:alternateName Leipzig University
280 schema:name Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...