Predicting biological system objectives de novo from internal state measurements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Erwin P Gianchandani, Matthew A Oberhardt, Anthony P Burgard, Costas D Maranas, Jason A Papin

ABSTRACT

BACKGROUND: Optimization theory has been applied to complex biological systems to interrogate network properties and develop and refine metabolic engineering strategies. For example, methods are emerging to engineer cells to optimally produce byproducts of commercial value, such as bioethanol, as well as molecular compounds for disease therapy. Flux balance analysis (FBA) is an optimization framework that aids in this interrogation by generating predictions of optimal flux distributions in cellular networks. Critical features of FBA are the definition of a biologically relevant objective function (e.g., maximizing the rate of synthesis of biomass, a unit of measurement of cellular growth) and the subsequent application of linear programming (LP) to identify fluxes through a reaction network. Despite the success of FBA, a central remaining challenge is the definition of a network objective with biological meaning. RESULTS: We present a novel method called Biological Objective Solution Search (BOSS) for the inference of an objective function of a biological system from its underlying network stoichiometry as well as experimentally-measured state variables. Specifically, BOSS identifies a system objective by defining a putative stoichiometric "objective reaction," adding this reaction to the existing set of stoichiometric constraints arising from known interactions within a network, and maximizing the putative objective reaction via LP, all the while minimizing the difference between the resultant in silico flux distribution and available experimental (e.g., isotopomer) flux data. This new approach allows for discovery of objectives with previously unknown stoichiometry, thus extending the biological relevance from earlier methods. We verify our approach on the well-characterized central metabolic network of Saccharomyces cerevisiae. CONCLUSION: We illustrate how BOSS offers insight into the functional organization of biochemical networks, facilitating the interrogation of cellular design principles and development of cellular engineering applications. Furthermore, we describe how growth is the best-fit objective function for the yeast metabolic network given experimentally-measured fluxes. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-43

DOI

http://dx.doi.org/10.1186/1471-2105-9-43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020467138

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18218092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Biomedical Engineering University of Virginia Box 800759, Health System Charlottesville, 22908, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gianchandani", 
        "givenName": "Erwin P", 
        "id": "sg:person.01364061227.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364061227.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Biomedical Engineering University of Virginia Box 800759, Health System Charlottesville, 22908, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberhardt", 
        "givenName": "Matthew A", 
        "id": "sg:person.01165717741.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165717741.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomatica (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420355.5", 
          "name": [
            "Genomatica, Inc., 92121, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgard", 
        "givenName": "Anthony P", 
        "id": "sg:person.01040472324.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040472324.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Chemical Engineering The Pennsylvania State University University Park, 16802, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maranas", 
        "givenName": "Costas D", 
        "id": "sg:person.01227175434.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175434.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Biomedical Engineering University of Virginia Box 800759, Health System Charlottesville, 22908, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papin", 
        "givenName": "Jason A", 
        "id": "sg:person.01277676573.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277676573.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0006-3495(02)73903-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002147221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-6-r49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003308492", 
          "https://doi.org/10.1186/gb-2005-6-6-r49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbl007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003925667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2005.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003984797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.10.5528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005244921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006064718", 
          "https://doi.org/10.1038/ng1856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006064718", 
          "https://doi.org/10.1038/ng1856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120611", 
          "https://doi.org/10.1038/nature04640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120611", 
          "https://doi.org/10.1038/nature04640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120611", 
          "https://doi.org/10.1038/nature04640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007246617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007246617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008527902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2005.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008603829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2005.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008603829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2005.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008716492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4083206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010531781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014101803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2004.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015129475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/84379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015458337", 
          "https://doi.org/10.1038/84379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/84379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015458337", 
          "https://doi.org/10.1038/84379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015769023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2003.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017889183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp0000712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018637899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(97)01067-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019774568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021019547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021019547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.09.110178.000335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024632576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025902533", 
          "https://doi.org/10.1038/nature01149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025902533", 
          "https://doi.org/10.1038/nature01149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025902533", 
          "https://doi.org/10.1038/nature01149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027050639", 
          "https://doi.org/10.1186/1471-2105-7-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027050639", 
          "https://doi.org/10.1186/1471-2105-7-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0010046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030466828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.232349399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031830342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2004.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035551307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037538801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037538801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(02)00034-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038267885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(02)00034-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038267885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.105.071720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038510077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bcp.2005.10.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038975775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2250904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040898952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041073298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.183.4.1441-1451.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041417409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042770559", 
          "https://doi.org/10.1038/nature01166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042770559", 
          "https://doi.org/10.1038/nature01166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042770559", 
          "https://doi.org/10.1038/nature01166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/ec.2.3.599-608.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043657193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2003.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044054586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2003.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044054586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1991.tb16251.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044396363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046774154", 
          "https://doi.org/10.1038/nrmicro1023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046774154", 
          "https://doi.org/10.1038/nrmicro1023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046774154", 
          "https://doi.org/10.1038/nrmicro1023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2006.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047340264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049207274", 
          "https://doi.org/10.1038/nature02289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049207274", 
          "https://doi.org/10.1038/nature02289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.184.1.152-164.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049987002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.103.029884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050129889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2004.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052592191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2047876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062519696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpregu.2001.280.3.r695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074752879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082595939", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082777895", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: Optimization theory has been applied to complex biological systems to interrogate network properties and develop and refine metabolic engineering strategies. For example, methods are emerging to engineer cells to optimally produce byproducts of commercial value, such as bioethanol, as well as molecular compounds for disease therapy. Flux balance analysis (FBA) is an optimization framework that aids in this interrogation by generating predictions of optimal flux distributions in cellular networks. Critical features of FBA are the definition of a biologically relevant objective function (e.g., maximizing the rate of synthesis of biomass, a unit of measurement of cellular growth) and the subsequent application of linear programming (LP) to identify fluxes through a reaction network. Despite the success of FBA, a central remaining challenge is the definition of a network objective with biological meaning.\nRESULTS: We present a novel method called Biological Objective Solution Search (BOSS) for the inference of an objective function of a biological system from its underlying network stoichiometry as well as experimentally-measured state variables. Specifically, BOSS identifies a system objective by defining a putative stoichiometric \"objective reaction,\" adding this reaction to the existing set of stoichiometric constraints arising from known interactions within a network, and maximizing the putative objective reaction via LP, all the while minimizing the difference between the resultant in silico flux distribution and available experimental (e.g., isotopomer) flux data. This new approach allows for discovery of objectives with previously unknown stoichiometry, thus extending the biological relevance from earlier methods. We verify our approach on the well-characterized central metabolic network of Saccharomyces cerevisiae.\nCONCLUSION: We illustrate how BOSS offers insight into the functional organization of biochemical networks, facilitating the interrogation of cellular design principles and development of cellular engineering applications. Furthermore, we describe how growth is the best-fit objective function for the yeast metabolic network given experimentally-measured fluxes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2684028", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Predicting biological system objectives de novo from internal state measurements", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "61858bfc4f027b384b98dc723dc7fbb56cc7a8b4710c4df6efd41711c45a6931"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18218092"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-43"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020467138"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-43", 
      "https://app.dimensions.ai/details/publication/pub.1020467138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-9-43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-43'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      81 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-43 schema:about N7ae150ee4f9049d8bb901d85d8314401
2 N83248b928d8e47a594a720f82ccccb5e
3 Nbc57d29832cb47b19d97dfc22e10529e
4 Nd6635fe7012c41e88de526966e08f25d
5 Nd92d08c3aedb416ebcc63f7ccca1c5df
6 anzsrc-for:01
7 anzsrc-for:0102
8 schema:author Na4cb03e7a1b94eb2ae37a11d03fb9878
9 schema:citation sg:pub.10.1038/84379
10 sg:pub.10.1038/nature01149
11 sg:pub.10.1038/nature01166
12 sg:pub.10.1038/nature02289
13 sg:pub.10.1038/nature04640
14 sg:pub.10.1038/ng1856
15 sg:pub.10.1038/nrmicro1023
16 sg:pub.10.1186/1471-2105-7-56
17 sg:pub.10.1186/gb-2005-6-6-r49
18 https://app.dimensions.ai/details/publication/pub.1082595939
19 https://app.dimensions.ai/details/publication/pub.1082777895
20 https://doi.org/10.1002/bit.10617
21 https://doi.org/10.1002/bit.20542
22 https://doi.org/10.1016/j.bcp.2005.10.049
23 https://doi.org/10.1016/j.copbio.2003.08.001
24 https://doi.org/10.1016/j.copbio.2003.11.003
25 https://doi.org/10.1016/j.jbiotec.2005.09.016
26 https://doi.org/10.1016/j.jbiotec.2006.09.004
27 https://doi.org/10.1016/j.mib.2004.08.004
28 https://doi.org/10.1016/j.mib.2005.06.011
29 https://doi.org/10.1016/j.tibs.2004.11.006
30 https://doi.org/10.1016/j.ymben.2004.02.004
31 https://doi.org/10.1016/j.ymben.2005.09.007
32 https://doi.org/10.1016/j.ymben.2005.11.002
33 https://doi.org/10.1016/s0006-3495(02)73903-9
34 https://doi.org/10.1016/s0167-7799(02)00034-3
35 https://doi.org/10.1016/s0167-7799(97)01067-6
36 https://doi.org/10.1021/bp0000712
37 https://doi.org/10.1038/msb4100109
38 https://doi.org/10.1038/msb4100162
39 https://doi.org/10.1073/pnas.232349399
40 https://doi.org/10.1073/pnas.97.10.5528
41 https://doi.org/10.1093/bib/bbl007
42 https://doi.org/10.1093/bioinformatics/19.2.261
43 https://doi.org/10.1093/bioinformatics/btl619
44 https://doi.org/10.1101/gr.2250904
45 https://doi.org/10.1101/gr.4083206
46 https://doi.org/10.1111/j.1432-1033.1991.tb16251.x
47 https://doi.org/10.1126/science.2047876
48 https://doi.org/10.1128/ec.2.3.599-608.2003
49 https://doi.org/10.1128/jb.183.4.1441-1451.2001
50 https://doi.org/10.1128/jb.184.1.152-164.2002
51 https://doi.org/10.1146/annurev.es.09.110178.000335
52 https://doi.org/10.1152/ajpregu.2001.280.3.r695
53 https://doi.org/10.1371/journal.pcbi.0010046
54 https://doi.org/10.1529/biophysj.103.029884
55 https://doi.org/10.1529/biophysj.105.071720
56 schema:datePublished 2008-12
57 schema:datePublishedReg 2008-12-01
58 schema:description BACKGROUND: Optimization theory has been applied to complex biological systems to interrogate network properties and develop and refine metabolic engineering strategies. For example, methods are emerging to engineer cells to optimally produce byproducts of commercial value, such as bioethanol, as well as molecular compounds for disease therapy. Flux balance analysis (FBA) is an optimization framework that aids in this interrogation by generating predictions of optimal flux distributions in cellular networks. Critical features of FBA are the definition of a biologically relevant objective function (e.g., maximizing the rate of synthesis of biomass, a unit of measurement of cellular growth) and the subsequent application of linear programming (LP) to identify fluxes through a reaction network. Despite the success of FBA, a central remaining challenge is the definition of a network objective with biological meaning. RESULTS: We present a novel method called Biological Objective Solution Search (BOSS) for the inference of an objective function of a biological system from its underlying network stoichiometry as well as experimentally-measured state variables. Specifically, BOSS identifies a system objective by defining a putative stoichiometric "objective reaction," adding this reaction to the existing set of stoichiometric constraints arising from known interactions within a network, and maximizing the putative objective reaction via LP, all the while minimizing the difference between the resultant in silico flux distribution and available experimental (e.g., isotopomer) flux data. This new approach allows for discovery of objectives with previously unknown stoichiometry, thus extending the biological relevance from earlier methods. We verify our approach on the well-characterized central metabolic network of Saccharomyces cerevisiae. CONCLUSION: We illustrate how BOSS offers insight into the functional organization of biochemical networks, facilitating the interrogation of cellular design principles and development of cellular engineering applications. Furthermore, we describe how growth is the best-fit objective function for the yeast metabolic network given experimentally-measured fluxes.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N510333c15e51488fa763c6f060b911c2
63 N7e2047f3bb3045afbb90fb0b1cca0b07
64 sg:journal.1023786
65 schema:name Predicting biological system objectives de novo from internal state measurements
66 schema:pagination 43
67 schema:productId N19418f6eecc0409a88d389d3e000435a
68 N3181031cfd884b85ba036be84ab96db2
69 N508301d1f904488e8f08761b83755887
70 Nc9dc2f8a63a44b0889758f9d48c49b75
71 Nf07ffc18b163449f9093c1b8dcef39c9
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020467138
73 https://doi.org/10.1186/1471-2105-9-43
74 schema:sdDatePublished 2019-04-10T22:30
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N122b259517f84d8984d3b91bfa9296e9
77 schema:url http://link.springer.com/10.1186%2F1471-2105-9-43
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N122b259517f84d8984d3b91bfa9296e9 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N19418f6eecc0409a88d389d3e000435a schema:name dimensions_id
84 schema:value pub.1020467138
85 rdf:type schema:PropertyValue
86 N3181031cfd884b85ba036be84ab96db2 schema:name nlm_unique_id
87 schema:value 100965194
88 rdf:type schema:PropertyValue
89 N475c4d995fc047eabf2979a8be18cb2e rdf:first sg:person.01277676573.14
90 rdf:rest rdf:nil
91 N508301d1f904488e8f08761b83755887 schema:name readcube_id
92 schema:value 61858bfc4f027b384b98dc723dc7fbb56cc7a8b4710c4df6efd41711c45a6931
93 rdf:type schema:PropertyValue
94 N510333c15e51488fa763c6f060b911c2 schema:volumeNumber 9
95 rdf:type schema:PublicationVolume
96 N7ae150ee4f9049d8bb901d85d8314401 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Metabolic Networks and Pathways
98 rdf:type schema:DefinedTerm
99 N7e2047f3bb3045afbb90fb0b1cca0b07 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N83248b928d8e47a594a720f82ccccb5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Systems Biology
103 rdf:type schema:DefinedTerm
104 Na4cb03e7a1b94eb2ae37a11d03fb9878 rdf:first sg:person.01364061227.36
105 rdf:rest Ncd8c3c7a249948dd82b8628a2ae29488
106 Nbc57d29832cb47b19d97dfc22e10529e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Forecasting
108 rdf:type schema:DefinedTerm
109 Nc5e578218407405e89cf62a474c9c228 rdf:first sg:person.01040472324.82
110 rdf:rest Ne26148d654154a05963b90317f361488
111 Nc9dc2f8a63a44b0889758f9d48c49b75 schema:name pubmed_id
112 schema:value 18218092
113 rdf:type schema:PropertyValue
114 Ncd8c3c7a249948dd82b8628a2ae29488 rdf:first sg:person.01165717741.49
115 rdf:rest Nc5e578218407405e89cf62a474c9c228
116 Nd6635fe7012c41e88de526966e08f25d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Saccharomyces cerevisiae
118 rdf:type schema:DefinedTerm
119 Nd92d08c3aedb416ebcc63f7ccca1c5df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Computational Biology
121 rdf:type schema:DefinedTerm
122 Ne26148d654154a05963b90317f361488 rdf:first sg:person.01227175434.08
123 rdf:rest N475c4d995fc047eabf2979a8be18cb2e
124 Nf07ffc18b163449f9093c1b8dcef39c9 schema:name doi
125 schema:value 10.1186/1471-2105-9-43
126 rdf:type schema:PropertyValue
127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
128 schema:name Mathematical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
131 schema:name Applied Mathematics
132 rdf:type schema:DefinedTerm
133 sg:grant.2684028 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-43
134 rdf:type schema:MonetaryGrant
135 sg:journal.1023786 schema:issn 1471-2105
136 schema:name BMC Bioinformatics
137 rdf:type schema:Periodical
138 sg:person.01040472324.82 schema:affiliation https://www.grid.ac/institutes/grid.420355.5
139 schema:familyName Burgard
140 schema:givenName Anthony P
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040472324.82
142 rdf:type schema:Person
143 sg:person.01165717741.49 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
144 schema:familyName Oberhardt
145 schema:givenName Matthew A
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165717741.49
147 rdf:type schema:Person
148 sg:person.01227175434.08 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
149 schema:familyName Maranas
150 schema:givenName Costas D
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175434.08
152 rdf:type schema:Person
153 sg:person.01277676573.14 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
154 schema:familyName Papin
155 schema:givenName Jason A
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277676573.14
157 rdf:type schema:Person
158 sg:person.01364061227.36 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
159 schema:familyName Gianchandani
160 schema:givenName Erwin P
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364061227.36
162 rdf:type schema:Person
163 sg:pub.10.1038/84379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458337
164 https://doi.org/10.1038/84379
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature01149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025902533
167 https://doi.org/10.1038/nature01149
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature01166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042770559
170 https://doi.org/10.1038/nature01166
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nature02289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049207274
173 https://doi.org/10.1038/nature02289
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nature04640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006120611
176 https://doi.org/10.1038/nature04640
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ng1856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006064718
179 https://doi.org/10.1038/ng1856
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nrmicro1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046774154
182 https://doi.org/10.1038/nrmicro1023
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2105-7-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027050639
185 https://doi.org/10.1186/1471-2105-7-56
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/gb-2005-6-6-r49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003308492
188 https://doi.org/10.1186/gb-2005-6-6-r49
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1082595939 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1082777895 schema:CreativeWork
192 https://doi.org/10.1002/bit.10617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008527902
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/bit.20542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037538801
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.bcp.2005.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038975775
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.copbio.2003.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044054586
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.copbio.2003.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017889183
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jbiotec.2005.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003984797
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.jbiotec.2006.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047340264
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.mib.2004.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015129475
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.mib.2005.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008603829
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.tibs.2004.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035551307
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.ymben.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052592191
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ymben.2005.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008716492
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.ymben.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015769023
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0006-3495(02)73903-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002147221
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0167-7799(02)00034-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038267885
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0167-7799(97)01067-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019774568
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/bp0000712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018637899
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1038/msb4100109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021019547
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1038/msb4100162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007246617
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.232349399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031830342
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.97.10.5528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005244921
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/bib/bbl007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003925667
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/19.2.261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041073298
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/btl619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014101803
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1101/gr.2250904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040898952
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1101/gr.4083206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010531781
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1111/j.1432-1033.1991.tb16251.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044396363
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.2047876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062519696
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1128/ec.2.3.599-608.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043657193
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1128/jb.183.4.1441-1451.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041417409
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/jb.184.1.152-164.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049987002
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1146/annurev.es.09.110178.000335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024632576
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1152/ajpregu.2001.280.3.r695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074752879
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pcbi.0010046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030466828
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1529/biophysj.103.029884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050129889
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1529/biophysj.105.071720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038510077
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
265 schema:name Department of Biomedical Engineering University of Virginia Box 800759, Health System Charlottesville, 22908, VA, USA
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
268 schema:name Department of Chemical Engineering The Pennsylvania State University University Park, 16802, PA, USA
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.420355.5 schema:alternateName Genomatica (United States)
271 schema:name Genomatica, Inc., 92121, San Diego, CA, USA
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...