Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-01-23

AUTHORS

Rekin's Janky, Jacques van Helden

ABSTRACT

BackgroundThe detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions.ResultsWe evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation.ConclusionThe footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation. More... »

PAGES

37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-37

DOI

http://dx.doi.org/10.1186/1471-2105-9-37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008642915

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18215291


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actinobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Footprinting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli K12", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gram-Positive Endospore-Forming Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serine Endopeptidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Universit\u00e9 Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050, Bruxelles, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Universit\u00e9 Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050, Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janky", 
        "givenName": "Rekin's", 
        "id": "sg:person.01161224330.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161224330.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Universit\u00e9 Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050, Bruxelles, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Universit\u00e9 Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050, Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Helden", 
        "givenName": "Jacques", 
        "id": "sg:person.0626672543.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt1098-939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049107556", 
          "https://doi.org/10.1038/nbt1098-939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004380051066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034470159", 
          "https://doi.org/10.1007/s004380051066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007199178", 
          "https://doi.org/10.1186/1471-2105-7-488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-514-5_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037981308", 
          "https://doi.org/10.1007/978-1-59745-514-5_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329510", 
          "https://doi.org/10.1186/1471-2105-5-170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016837348", 
          "https://doi.org/10.1186/1471-2164-7-147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-003-0952-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050711091", 
          "https://doi.org/10.1007/s00438-003-0952-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007965784", 
          "https://doi.org/10.1186/1471-2105-5-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030939237", 
          "https://doi.org/10.1038/nbt1053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/79965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027354871", 
          "https://doi.org/10.1038/79965"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01-23", 
    "datePublishedReg": "2008-01-23", 
    "description": "BackgroundThe detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions.ResultsWe evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation.ConclusionThe footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-9-37", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6770571", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "Escherichia coli K12 gene", 
      "cis-acting regulatory elements", 
      "cis-acting regulatory signals", 
      "cis-regulatory elements", 
      "Gram-positive phylum", 
      "specificity switching", 
      "orthologous genes", 
      "bacterial orthologs", 
      "strong conservation", 
      "helix domain", 
      "bacterial genomes", 
      "K12 gene", 
      "LexA repressor", 
      "regulatory elements", 
      "regulatory signals", 
      "taxonomical levels", 
      "distinct motifs", 
      "helix turn", 
      "such motifs", 
      "motif", 
      "E. coli", 
      "genes", 
      "testable hypotheses", 
      "discovery strategies", 
      "spaced motifs", 
      "regulation", 
      "orthologs", 
      "discovery approach", 
      "LexA", 
      "repressor", 
      "genome", 
      "phyla", 
      "Actinobacteria", 
      "discovery", 
      "Firmicutes", 
      "promoter", 
      "common strategy", 
      "coli", 
      "conservation", 
      "bacteria", 
      "evolution", 
      "intermediate state", 
      "discovery methods", 
      "hypothesis", 
      "domain", 
      "sites", 
      "different combinations", 
      "detailed analysis", 
      "levels", 
      "elements", 
      "box", 
      "strategies", 
      "signals", 
      "tool", 
      "default parameters", 
      "factors", 
      "addition", 
      "significance", 
      "analysis", 
      "software tools", 
      "combination", 
      "systematic evaluation", 
      "detection", 
      "black box", 
      "results", 
      "prediction", 
      "switching", 
      "approach", 
      "state", 
      "method", 
      "parameters", 
      "level of correctness", 
      "sizeable improvements", 
      "evaluation", 
      "improvement", 
      "performance", 
      "optimal parameters", 
      "correctness", 
      "excellent results"
    ], 
    "name": "Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution", 
    "pagination": "37", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008642915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-37"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18215291"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-37", 
      "https://app.dimensions.ai/details/publication/pub.1008642915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_451.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-9-37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-37'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      22 PREDICATES      133 URIs      112 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-37 schema:about N0a9b522a24534325878fdcb9a28f3db7
2 N0ec2f46f27104a00939b14e9093979cc
3 N127f2c69572d4b96a3c6e0ad99d83acf
4 N256570f4546e4d4b952c450eb7dcb2ec
5 N260c5ec9572543a88b647404a0bd1f29
6 N3019c445420247a4bb745279a0c23770
7 N4a3813ad0cf847189eed7fa5a9227140
8 N52aad9afe4e244e08f00aee5a89df15e
9 N80d73daf797a433588e17c9950b4568f
10 N877855492ba54a99867f7fb62b0097ca
11 Nb6aa2b14471f44eeb22822062f0bb2fc
12 Nd22544118a0a4d33beb9261546e040c9
13 Ne047d217001144c193c99e63fd01ac97
14 Nfeaa562390a04d4ea637efb6bc5903bf
15 Nff918ffa07804f509441a13f67764229
16 anzsrc-for:06
17 anzsrc-for:0604
18 anzsrc-for:0605
19 schema:author N37cf444757c34093821312cfd1cd41dd
20 schema:citation sg:pub.10.1007/978-1-59745-514-5_18
21 sg:pub.10.1007/s00438-003-0952-x
22 sg:pub.10.1007/s004380051066
23 sg:pub.10.1038/10343
24 sg:pub.10.1038/79965
25 sg:pub.10.1038/nature01644
26 sg:pub.10.1038/nbt1053
27 sg:pub.10.1038/nbt1098-939
28 sg:pub.10.1186/1471-2105-5-170
29 sg:pub.10.1186/1471-2105-5-6
30 sg:pub.10.1186/1471-2105-7-488
31 sg:pub.10.1186/1471-2164-7-147
32 schema:datePublished 2008-01-23
33 schema:datePublishedReg 2008-01-23
34 schema:description BackgroundThe detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions.ResultsWe evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation.ConclusionThe footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.
35 schema:genre article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf Na7aca3db24cd4af6a1920dff3022e616
39 Nb8e042cff5fa49de9f9104a67d4f05a7
40 sg:journal.1023786
41 schema:keywords Actinobacteria
42 E. coli
43 Escherichia coli K12 gene
44 Firmicutes
45 Gram-positive phylum
46 K12 gene
47 LexA
48 LexA repressor
49 addition
50 analysis
51 approach
52 bacteria
53 bacterial genomes
54 bacterial orthologs
55 black box
56 box
57 cis-acting regulatory elements
58 cis-acting regulatory signals
59 cis-regulatory elements
60 coli
61 combination
62 common strategy
63 conservation
64 correctness
65 default parameters
66 detailed analysis
67 detection
68 different combinations
69 discovery
70 discovery approach
71 discovery methods
72 discovery strategies
73 distinct motifs
74 domain
75 elements
76 evaluation
77 evolution
78 excellent results
79 factors
80 genes
81 genome
82 helix domain
83 helix turn
84 hypothesis
85 improvement
86 intermediate state
87 level of correctness
88 levels
89 method
90 motif
91 optimal parameters
92 orthologous genes
93 orthologs
94 parameters
95 performance
96 phyla
97 prediction
98 promoter
99 regulation
100 regulatory elements
101 regulatory signals
102 repressor
103 results
104 signals
105 significance
106 sites
107 sizeable improvements
108 software tools
109 spaced motifs
110 specificity switching
111 state
112 strategies
113 strong conservation
114 such motifs
115 switching
116 systematic evaluation
117 taxonomical levels
118 testable hypotheses
119 tool
120 schema:name Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution
121 schema:pagination 37
122 schema:productId N70035452cdf44da4a0b4ef07ed531901
123 Nc892f3bd24504203b8b95e243ea4d262
124 Ne5e6c910943648cbbd6d98606ea68061
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008642915
126 https://doi.org/10.1186/1471-2105-9-37
127 schema:sdDatePublished 2022-05-20T07:24
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher N2efa16512dae43d191c0b4bfd90396fb
130 schema:url https://doi.org/10.1186/1471-2105-9-37
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N0a9b522a24534325878fdcb9a28f3db7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Conserved Sequence
136 rdf:type schema:DefinedTerm
137 N0ec2f46f27104a00939b14e9093979cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Gram-Positive Endospore-Forming Bacteria
139 rdf:type schema:DefinedTerm
140 N127f2c69572d4b96a3c6e0ad99d83acf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Sequence Homology, Nucleic Acid
142 rdf:type schema:DefinedTerm
143 N256570f4546e4d4b952c450eb7dcb2ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Actinobacteria
145 rdf:type schema:DefinedTerm
146 N260c5ec9572543a88b647404a0bd1f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Evolution, Molecular
148 rdf:type schema:DefinedTerm
149 N2efa16512dae43d191c0b4bfd90396fb schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 N3019c445420247a4bb745279a0c23770 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Bacterial Proteins
153 rdf:type schema:DefinedTerm
154 N37cf444757c34093821312cfd1cd41dd rdf:first sg:person.01161224330.14
155 rdf:rest N62c8e2a1d7f9466bb2dae35e6c4d70ae
156 N4a3813ad0cf847189eed7fa5a9227140 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Promoter Regions, Genetic
158 rdf:type schema:DefinedTerm
159 N52aad9afe4e244e08f00aee5a89df15e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Algorithms
161 rdf:type schema:DefinedTerm
162 N62c8e2a1d7f9466bb2dae35e6c4d70ae rdf:first sg:person.0626672543.46
163 rdf:rest rdf:nil
164 N70035452cdf44da4a0b4ef07ed531901 schema:name pubmed_id
165 schema:value 18215291
166 rdf:type schema:PropertyValue
167 N80d73daf797a433588e17c9950b4568f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Escherichia coli K12
169 rdf:type schema:DefinedTerm
170 N877855492ba54a99867f7fb62b0097ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Amino Acid Motifs
172 rdf:type schema:DefinedTerm
173 Na7aca3db24cd4af6a1920dff3022e616 schema:volumeNumber 9
174 rdf:type schema:PublicationVolume
175 Nb6aa2b14471f44eeb22822062f0bb2fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Software
177 rdf:type schema:DefinedTerm
178 Nb8e042cff5fa49de9f9104a67d4f05a7 schema:issueNumber 1
179 rdf:type schema:PublicationIssue
180 Nc892f3bd24504203b8b95e243ea4d262 schema:name dimensions_id
181 schema:value pub.1008642915
182 rdf:type schema:PropertyValue
183 Nd22544118a0a4d33beb9261546e040c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Phylogeny
185 rdf:type schema:DefinedTerm
186 Ne047d217001144c193c99e63fd01ac97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Genome, Bacterial
188 rdf:type schema:DefinedTerm
189 Ne5e6c910943648cbbd6d98606ea68061 schema:name doi
190 schema:value 10.1186/1471-2105-9-37
191 rdf:type schema:PropertyValue
192 Nfeaa562390a04d4ea637efb6bc5903bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Serine Endopeptidases
194 rdf:type schema:DefinedTerm
195 Nff918ffa07804f509441a13f67764229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name DNA Footprinting
197 rdf:type schema:DefinedTerm
198 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
199 schema:name Biological Sciences
200 rdf:type schema:DefinedTerm
201 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
202 schema:name Genetics
203 rdf:type schema:DefinedTerm
204 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
205 schema:name Microbiology
206 rdf:type schema:DefinedTerm
207 sg:grant.6770571 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-37
208 rdf:type schema:MonetaryGrant
209 sg:journal.1023786 schema:issn 1471-2105
210 schema:name BMC Bioinformatics
211 schema:publisher Springer Nature
212 rdf:type schema:Periodical
213 sg:person.01161224330.14 schema:affiliation grid-institutes:grid.4989.c
214 schema:familyName Janky
215 schema:givenName Rekin's
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161224330.14
217 rdf:type schema:Person
218 sg:person.0626672543.46 schema:affiliation grid-institutes:grid.4989.c
219 schema:familyName van Helden
220 schema:givenName Jacques
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46
222 rdf:type schema:Person
223 sg:pub.10.1007/978-1-59745-514-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037981308
224 https://doi.org/10.1007/978-1-59745-514-5_18
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s00438-003-0952-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050711091
227 https://doi.org/10.1007/s00438-003-0952-x
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s004380051066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034470159
230 https://doi.org/10.1007/s004380051066
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
233 https://doi.org/10.1038/10343
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/79965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027354871
236 https://doi.org/10.1038/79965
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
239 https://doi.org/10.1038/nature01644
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nbt1053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030939237
242 https://doi.org/10.1038/nbt1053
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nbt1098-939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107556
245 https://doi.org/10.1038/nbt1098-939
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1471-2105-5-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000329510
248 https://doi.org/10.1186/1471-2105-5-170
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1471-2105-5-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007965784
251 https://doi.org/10.1186/1471-2105-5-6
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2105-7-488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007199178
254 https://doi.org/10.1186/1471-2105-7-488
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/1471-2164-7-147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016837348
257 https://doi.org/10.1186/1471-2164-7-147
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.4989.c schema:alternateName Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050, Bruxelles, Belgium
260 schema:name Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050, Bruxelles, Belgium
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...