Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-01-23

AUTHORS

Rekin's Janky, Jacques van Helden

ABSTRACT

BACKGROUND: The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions. RESULTS: We evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation. CONCLUSION: The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation. More... »

PAGES

37-37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-37

DOI

http://dx.doi.org/10.1186/1471-2105-9-37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008642915

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18215291


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actinobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Footprinting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli K12", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gram-Positive Endospore-Forming Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serine Endopeptidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Universit\u00e9 Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Universit\u00e9 Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janky", 
        "givenName": "Rekin's", 
        "id": "sg:person.01161224330.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161224330.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Universit\u00e9 Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Universit\u00e9 Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Helden", 
        "givenName": "Jacques", 
        "id": "sg:person.0626672543.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007199178", 
          "https://doi.org/10.1186/1471-2105-7-488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004380051066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034470159", 
          "https://doi.org/10.1007/s004380051066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-514-5_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037981308", 
          "https://doi.org/10.1007/978-1-59745-514-5_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/79965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027354871", 
          "https://doi.org/10.1038/79965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030939237", 
          "https://doi.org/10.1038/nbt1053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-003-0952-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050711091", 
          "https://doi.org/10.1007/s00438-003-0952-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329510", 
          "https://doi.org/10.1186/1471-2105-5-170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1098-939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049107556", 
          "https://doi.org/10.1038/nbt1098-939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007965784", 
          "https://doi.org/10.1186/1471-2105-5-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016837348", 
          "https://doi.org/10.1186/1471-2164-7-147"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01-23", 
    "datePublishedReg": "2008-01-23", 
    "description": "BACKGROUND: The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions.\nRESULTS: We evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation.\nCONCLUSION: The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-9-37", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "Escherichia coli K12 gene", 
      "cis-acting regulatory elements", 
      "cis-acting regulatory signals", 
      "cis-regulatory elements", 
      "Gram-positive phylum", 
      "specificity switching", 
      "orthologous genes", 
      "bacterial orthologs", 
      "strong conservation", 
      "bacterial genomes", 
      "helix domain", 
      "K12 gene", 
      "LexA repressor", 
      "regulatory elements", 
      "regulatory signals", 
      "taxonomical levels", 
      "distinct motifs", 
      "helix turn", 
      "motif", 
      "such motifs", 
      "genes", 
      "testable hypotheses", 
      "discovery strategies", 
      "regulation", 
      "orthologs", 
      "LexA", 
      "discovery approach", 
      "repressor", 
      "genome", 
      "phyla", 
      "Actinobacteria", 
      "Firmicutes", 
      "promoter", 
      "discovery", 
      "common strategy", 
      "coli", 
      "conservation", 
      "spaced motifs", 
      "evolution", 
      "bacteria", 
      "intermediate state", 
      "hypothesis", 
      "discovery methods", 
      "domain", 
      "sites", 
      "detailed analysis", 
      "different combinations", 
      "levels", 
      "box", 
      "elements", 
      "strategies", 
      "signals", 
      "tool", 
      "factors", 
      "addition", 
      "default parameters", 
      "significance", 
      "analysis", 
      "combination", 
      "software tools", 
      "systematic evaluation", 
      "detection", 
      "black box", 
      "results", 
      "prediction", 
      "switching", 
      "approach", 
      "state", 
      "method", 
      "parameters", 
      "level of correctness", 
      "sizeable improvements", 
      "evaluation", 
      "improvement", 
      "performance", 
      "optimal parameters", 
      "correctness", 
      "excellent results", 
      "footprint discovery strategy", 
      "footprint discovery approach", 
      "footprint discovery", 
      "coli K12 genes", 
      "taxon-specific motifs", 
      "evolution of LexA", 
      "footprint discovery method", 
      "phylogenetic footprint discovery", 
      "bacterial cis-regulatory elements"
    ], 
    "name": "Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution", 
    "pagination": "37-37", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008642915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-37"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18215291"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-37", 
      "https://app.dimensions.ai/details/publication/pub.1008642915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_457.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-9-37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-37'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      22 PREDICATES      141 URIs      120 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-37 schema:about N033cf826188f433ea2ac61392e49af20
2 N0423c2cb9e8e461c861068c87c9d37d7
3 N12400e16f72e487c9889d95328bd6755
4 N27f2d36bee9b4fd7a5a100b376bc5098
5 N2a5075e0b7744c9ca704ab294797d572
6 N38ec3dd7a39b453fa055dff30c994953
7 N490006543aad477aadb13a896d2b7cef
8 N58daeea7e9954480bb0bec152b6e8199
9 N6dd0f911c3464e2d8236383181d5d5eb
10 Nb5f5324f350546d78f5c5966bf609e41
11 Nb86fcf22ada0472a8030d45b73e43f80
12 Nb8e422b2ff274289b75cab5fec7cd497
13 Nbe3eb892e1094ebda1949dbde513cf3f
14 Nf3c566ae05184ea693a89602e7b05faf
15 Nfbf88703e1b2412880566489932af1ad
16 anzsrc-for:06
17 anzsrc-for:0604
18 anzsrc-for:0605
19 schema:author N88c77ae2228e4465951256e7050d7a59
20 schema:citation sg:pub.10.1007/978-1-59745-514-5_18
21 sg:pub.10.1007/s00438-003-0952-x
22 sg:pub.10.1007/s004380051066
23 sg:pub.10.1038/10343
24 sg:pub.10.1038/79965
25 sg:pub.10.1038/nature01644
26 sg:pub.10.1038/nbt1053
27 sg:pub.10.1038/nbt1098-939
28 sg:pub.10.1186/1471-2105-5-170
29 sg:pub.10.1186/1471-2105-5-6
30 sg:pub.10.1186/1471-2105-7-488
31 sg:pub.10.1186/1471-2164-7-147
32 schema:datePublished 2008-01-23
33 schema:datePublishedReg 2008-01-23
34 schema:description BACKGROUND: The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions. RESULTS: We evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation. CONCLUSION: The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.
35 schema:genre article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N66eafa0982e74ab2b6ba2044ada83448
39 N9e3067b6ba8440c2a4d491c6777cd073
40 sg:journal.1023786
41 schema:keywords Actinobacteria
42 Escherichia coli K12 gene
43 Firmicutes
44 Gram-positive phylum
45 K12 gene
46 LexA
47 LexA repressor
48 addition
49 analysis
50 approach
51 bacteria
52 bacterial cis-regulatory elements
53 bacterial genomes
54 bacterial orthologs
55 black box
56 box
57 cis-acting regulatory elements
58 cis-acting regulatory signals
59 cis-regulatory elements
60 coli
61 coli K12 genes
62 combination
63 common strategy
64 conservation
65 correctness
66 default parameters
67 detailed analysis
68 detection
69 different combinations
70 discovery
71 discovery approach
72 discovery methods
73 discovery strategies
74 distinct motifs
75 domain
76 elements
77 evaluation
78 evolution
79 evolution of LexA
80 excellent results
81 factors
82 footprint discovery
83 footprint discovery approach
84 footprint discovery method
85 footprint discovery strategy
86 genes
87 genome
88 helix domain
89 helix turn
90 hypothesis
91 improvement
92 intermediate state
93 level of correctness
94 levels
95 method
96 motif
97 optimal parameters
98 orthologous genes
99 orthologs
100 parameters
101 performance
102 phyla
103 phylogenetic footprint discovery
104 prediction
105 promoter
106 regulation
107 regulatory elements
108 regulatory signals
109 repressor
110 results
111 signals
112 significance
113 sites
114 sizeable improvements
115 software tools
116 spaced motifs
117 specificity switching
118 state
119 strategies
120 strong conservation
121 such motifs
122 switching
123 systematic evaluation
124 taxon-specific motifs
125 taxonomical levels
126 testable hypotheses
127 tool
128 schema:name Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution
129 schema:pagination 37-37
130 schema:productId N158ec9f91ba74ca09ca35e1f2aefe5d2
131 Nd3f41d10146542f6bb58bd3726d34a52
132 Ne55508146c514e2195afa02302af44d8
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008642915
134 https://doi.org/10.1186/1471-2105-9-37
135 schema:sdDatePublished 2022-01-01T18:18
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher N96f5cd62a3d94684857746b22af964a5
138 schema:url https://doi.org/10.1186/1471-2105-9-37
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N033cf826188f433ea2ac61392e49af20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Actinobacteria
144 rdf:type schema:DefinedTerm
145 N0423c2cb9e8e461c861068c87c9d37d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Conserved Sequence
147 rdf:type schema:DefinedTerm
148 N12400e16f72e487c9889d95328bd6755 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name DNA Footprinting
150 rdf:type schema:DefinedTerm
151 N158ec9f91ba74ca09ca35e1f2aefe5d2 schema:name pubmed_id
152 schema:value 18215291
153 rdf:type schema:PropertyValue
154 N1b2a526c0bbc4e55b054f84b9ff7457b rdf:first sg:person.0626672543.46
155 rdf:rest rdf:nil
156 N27f2d36bee9b4fd7a5a100b376bc5098 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Evolution, Molecular
158 rdf:type schema:DefinedTerm
159 N2a5075e0b7744c9ca704ab294797d572 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Amino Acid Motifs
161 rdf:type schema:DefinedTerm
162 N38ec3dd7a39b453fa055dff30c994953 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Promoter Regions, Genetic
164 rdf:type schema:DefinedTerm
165 N490006543aad477aadb13a896d2b7cef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Bacterial Proteins
167 rdf:type schema:DefinedTerm
168 N58daeea7e9954480bb0bec152b6e8199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Genome, Bacterial
170 rdf:type schema:DefinedTerm
171 N66eafa0982e74ab2b6ba2044ada83448 schema:volumeNumber 9
172 rdf:type schema:PublicationVolume
173 N6dd0f911c3464e2d8236383181d5d5eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Algorithms
175 rdf:type schema:DefinedTerm
176 N88c77ae2228e4465951256e7050d7a59 rdf:first sg:person.01161224330.14
177 rdf:rest N1b2a526c0bbc4e55b054f84b9ff7457b
178 N96f5cd62a3d94684857746b22af964a5 schema:name Springer Nature - SN SciGraph project
179 rdf:type schema:Organization
180 N9e3067b6ba8440c2a4d491c6777cd073 schema:issueNumber 1
181 rdf:type schema:PublicationIssue
182 Nb5f5324f350546d78f5c5966bf609e41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Escherichia coli K12
184 rdf:type schema:DefinedTerm
185 Nb86fcf22ada0472a8030d45b73e43f80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Sequence Homology, Nucleic Acid
187 rdf:type schema:DefinedTerm
188 Nb8e422b2ff274289b75cab5fec7cd497 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Serine Endopeptidases
190 rdf:type schema:DefinedTerm
191 Nbe3eb892e1094ebda1949dbde513cf3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Phylogeny
193 rdf:type schema:DefinedTerm
194 Nd3f41d10146542f6bb58bd3726d34a52 schema:name dimensions_id
195 schema:value pub.1008642915
196 rdf:type schema:PropertyValue
197 Ne55508146c514e2195afa02302af44d8 schema:name doi
198 schema:value 10.1186/1471-2105-9-37
199 rdf:type schema:PropertyValue
200 Nf3c566ae05184ea693a89602e7b05faf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Gram-Positive Endospore-Forming Bacteria
202 rdf:type schema:DefinedTerm
203 Nfbf88703e1b2412880566489932af1ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Software
205 rdf:type schema:DefinedTerm
206 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
207 schema:name Biological Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
210 schema:name Genetics
211 rdf:type schema:DefinedTerm
212 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
213 schema:name Microbiology
214 rdf:type schema:DefinedTerm
215 sg:journal.1023786 schema:issn 1471-2105
216 schema:name BMC Bioinformatics
217 schema:publisher Springer Nature
218 rdf:type schema:Periodical
219 sg:person.01161224330.14 schema:affiliation grid-institutes:grid.4989.c
220 schema:familyName Janky
221 schema:givenName Rekin's
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161224330.14
223 rdf:type schema:Person
224 sg:person.0626672543.46 schema:affiliation grid-institutes:grid.4989.c
225 schema:familyName van Helden
226 schema:givenName Jacques
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46
228 rdf:type schema:Person
229 sg:pub.10.1007/978-1-59745-514-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037981308
230 https://doi.org/10.1007/978-1-59745-514-5_18
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00438-003-0952-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050711091
233 https://doi.org/10.1007/s00438-003-0952-x
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s004380051066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034470159
236 https://doi.org/10.1007/s004380051066
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
239 https://doi.org/10.1038/10343
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/79965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027354871
242 https://doi.org/10.1038/79965
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
245 https://doi.org/10.1038/nature01644
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nbt1053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030939237
248 https://doi.org/10.1038/nbt1053
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nbt1098-939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107556
251 https://doi.org/10.1038/nbt1098-939
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2105-5-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000329510
254 https://doi.org/10.1186/1471-2105-5-170
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/1471-2105-5-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007965784
257 https://doi.org/10.1186/1471-2105-5-6
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/1471-2105-7-488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007199178
260 https://doi.org/10.1186/1471-2105-7-488
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/1471-2164-7-147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016837348
263 https://doi.org/10.1186/1471-2164-7-147
264 rdf:type schema:CreativeWork
265 grid-institutes:grid.4989.c schema:alternateName Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium
266 schema:name Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...