Aspects of coverage in medical DNA sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Michael C Wendl, Richard K Wilson

ABSTRACT

BACKGROUND: DNA sequencing is now emerging as an important component in biomedical studies of diseases like cancer. Short-read, highly parallel sequencing instruments are expected to be used heavily for such projects, but many design specifications have yet to be conclusively established. Perhaps the most fundamental of these is the redundancy required to detect sequence variations, which bears directly upon genomic coverage and the consequent resolving power for discerning somatic mutations. RESULTS: We address the medical sequencing coverage problem via an extension of the standard mathematical theory of haploid coverage. The expected diploid multi-fold coverage, as well as its generalization for aneuploidy are derived and these expressions can be readily evaluated for any project. The resulting theory is used as a scaling law to calibrate performance to that of standard BAC sequencing at 8x to 10x redundancy, i.e. for expected coverages that exceed 99% of the unique sequence. A differential strategy is formalized for tumor/normal studies wherein tumor samples are sequenced more deeply than normal ones. In particular, both tumor alleles should be detected at least twice, while both normal alleles are detected at least once. Our theory predicts these requirements can be met for tumor and normal redundancies of approximately 26x and 21x, respectively. We explain why these values do not differ by a factor of 2, as might intuitively be expected. Future technology developments should prompt even deeper sequencing of tumors, but the 21x value for normal samples is essentially a constant. CONCLUSION: Given the assumptions of standard coverage theory, our model gives pragmatic estimates for required redundancy. The differential strategy should be an efficient means of identifying potential somatic mutations for further study. More... »

PAGES

239

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-239

DOI

http://dx.doi.org/10.1186/1471-2105-9-239

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040243916

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18485222


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Helminth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ploidies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Genome Sequencing Center and Department of Genetics, Washington University, 63108, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wendl", 
        "givenName": "Michael C", 
        "id": "sg:person.01101036555.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101036555.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Genome Sequencing Center and Department of Genetics, Washington University, 63108, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilson", 
        "givenName": "Richard K", 
        "id": "sg:person.013076541047.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076541047.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1133427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000786924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001773338", 
          "https://doi.org/10.1038/nmeth.1179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0507200102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003027994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0507200102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003027994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1105-1333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003344221", 
          "https://doi.org/10.1038/nbt1105-1333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1105-1333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003344221", 
          "https://doi.org/10.1038/nbt1105-1333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005370988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176994951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005386356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007381556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/humrep/13.2.313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008465320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368032a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010019915", 
          "https://doi.org/10.1038/368032a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/14622416.7.4.597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010813037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(88)90007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012677419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.3.1124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013878652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177731315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014931079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.655102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015778962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017299791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-8628(19990702)85:1<86::aid-ajmg16>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020054741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020268444", 
          "https://doi.org/10.1186/1471-2164-7-275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6151507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020576715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-005-9021-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024766336", 
          "https://doi.org/10.1007/s11538-005-9021-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.12.5463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027335183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/448010b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035588435", 
          "https://doi.org/10.1038/448010b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(76)90055-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043424878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044852848", 
          "https://doi.org/10.1186/1471-2105-6-245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044852848", 
          "https://doi.org/10.1186/1471-2105-6-245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047672670", 
          "https://doi.org/10.1038/nature06884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2335924100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049901547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050771152", 
          "https://doi.org/10.1038/nrg1085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050771152", 
          "https://doi.org/10.1038/nrg1085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2006.13.1177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/11.2.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/sqb.2003.68.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060415962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5396.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.311.5767.1544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062591532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070227148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982828"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: DNA sequencing is now emerging as an important component in biomedical studies of diseases like cancer. Short-read, highly parallel sequencing instruments are expected to be used heavily for such projects, but many design specifications have yet to be conclusively established. Perhaps the most fundamental of these is the redundancy required to detect sequence variations, which bears directly upon genomic coverage and the consequent resolving power for discerning somatic mutations.\nRESULTS: We address the medical sequencing coverage problem via an extension of the standard mathematical theory of haploid coverage. The expected diploid multi-fold coverage, as well as its generalization for aneuploidy are derived and these expressions can be readily evaluated for any project. The resulting theory is used as a scaling law to calibrate performance to that of standard BAC sequencing at 8x to 10x redundancy, i.e. for expected coverages that exceed 99% of the unique sequence. A differential strategy is formalized for tumor/normal studies wherein tumor samples are sequenced more deeply than normal ones. In particular, both tumor alleles should be detected at least twice, while both normal alleles are detected at least once. Our theory predicts these requirements can be met for tumor and normal redundancies of approximately 26x and 21x, respectively. We explain why these values do not differ by a factor of 2, as might intuitively be expected. Future technology developments should prompt even deeper sequencing of tumors, but the 21x value for normal samples is essentially a constant.\nCONCLUSION: Given the assumptions of standard coverage theory, our model gives pragmatic estimates for required redundancy. The differential strategy should be an efficient means of identifying potential somatic mutations for further study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-239", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699329", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Aspects of coverage in medical DNA sequencing", 
    "pagination": "239", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bfb4e96cd422ced6148ebf7dd9ea8b718fab7f3e37ea50f9788f2bca45a134fe"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18485222"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-239"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040243916"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-239", 
      "https://app.dimensions.ai/details/publication/pub.1040243916"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113676_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-9-239"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-239'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-239'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-239'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-239'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      79 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-239 schema:about N1a3c0020f664406ea00b47928b01aea9
2 N1d3d07a920194dfbbd67bcee74fbcf0d
3 N2631ff766a13415aa2e0b43833eb9646
4 N2fbf788915ad4e3abeb5e1e88c174ec8
5 N4343e88b3d6b432088606b5db3f0480e
6 N4361de2c856543fdbdd3edfaae9651ab
7 N4f392ad4f7574efaabe9256546e8b9cd
8 N67d1cfb02c1d4111915f570c41b096c4
9 N7b7efb57cef240bda799b46e83f9d474
10 N8728b214df3f43588fea08c87859c361
11 N8d1e55e7098047a3986a7d738d686a96
12 N98d5f41fee9c4b8699bca3f961d500a9
13 Naa12fbed7f3a4f928cf6cbeb76bea3e4
14 Nc3c77697fa1b486a88ba473d50bf0624
15 anzsrc-for:01
16 anzsrc-for:0102
17 schema:author Neff548f181764fcd9f5d644d467856a4
18 schema:citation sg:pub.10.1007/s11538-005-9021-4
19 sg:pub.10.1038/35057062
20 sg:pub.10.1038/368032a0
21 sg:pub.10.1038/448010b
22 sg:pub.10.1038/nature06884
23 sg:pub.10.1038/nbt1105-1333
24 sg:pub.10.1038/nmeth.1179
25 sg:pub.10.1038/nrg1085
26 sg:pub.10.1186/1471-2105-6-245
27 sg:pub.10.1186/1471-2164-7-275
28 https://doi.org/10.1002/(sici)1096-8628(19990702)85:1<86::aid-ajmg16>3.0.co;2-m
29 https://doi.org/10.1016/0092-8674(76)90055-6
30 https://doi.org/10.1016/0888-7543(88)90007-9
31 https://doi.org/10.1016/j.gde.2006.10.009
32 https://doi.org/10.1016/j.tig.2007.12.007
33 https://doi.org/10.1073/pnas.0507200102
34 https://doi.org/10.1073/pnas.2335924100
35 https://doi.org/10.1073/pnas.74.12.5463
36 https://doi.org/10.1073/pnas.98.3.1124
37 https://doi.org/10.1089/cmb.2006.13.1177
38 https://doi.org/10.1093/bioinformatics/11.2.155
39 https://doi.org/10.1093/bioinformatics/btl629
40 https://doi.org/10.1093/humrep/13.2.313
41 https://doi.org/10.1093/nar/gni170
42 https://doi.org/10.1101/gr.6151507
43 https://doi.org/10.1101/gr.655102
44 https://doi.org/10.1101/sqb.2003.68.23
45 https://doi.org/10.1126/science.1133427
46 https://doi.org/10.1126/science.282.5396.2012
47 https://doi.org/10.1126/science.311.5767.1544
48 https://doi.org/10.1214/aoms/1177731315
49 https://doi.org/10.1214/aop/1176994951
50 https://doi.org/10.1371/journal.pbio.0050254
51 https://doi.org/10.2217/14622416.7.4.597
52 https://doi.org/10.2307/2347661
53 https://doi.org/10.2307/3212948
54 schema:datePublished 2008-12
55 schema:datePublishedReg 2008-12-01
56 schema:description BACKGROUND: DNA sequencing is now emerging as an important component in biomedical studies of diseases like cancer. Short-read, highly parallel sequencing instruments are expected to be used heavily for such projects, but many design specifications have yet to be conclusively established. Perhaps the most fundamental of these is the redundancy required to detect sequence variations, which bears directly upon genomic coverage and the consequent resolving power for discerning somatic mutations. RESULTS: We address the medical sequencing coverage problem via an extension of the standard mathematical theory of haploid coverage. The expected diploid multi-fold coverage, as well as its generalization for aneuploidy are derived and these expressions can be readily evaluated for any project. The resulting theory is used as a scaling law to calibrate performance to that of standard BAC sequencing at 8x to 10x redundancy, i.e. for expected coverages that exceed 99% of the unique sequence. A differential strategy is formalized for tumor/normal studies wherein tumor samples are sequenced more deeply than normal ones. In particular, both tumor alleles should be detected at least twice, while both normal alleles are detected at least once. Our theory predicts these requirements can be met for tumor and normal redundancies of approximately 26x and 21x, respectively. We explain why these values do not differ by a factor of 2, as might intuitively be expected. Future technology developments should prompt even deeper sequencing of tumors, but the 21x value for normal samples is essentially a constant. CONCLUSION: Given the assumptions of standard coverage theory, our model gives pragmatic estimates for required redundancy. The differential strategy should be an efficient means of identifying potential somatic mutations for further study.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf Na1786a0f5389433893ba0fec82024991
61 Nc7253a618c484fc6b12f1147895bf615
62 sg:journal.1023786
63 schema:name Aspects of coverage in medical DNA sequencing
64 schema:pagination 239
65 schema:productId N4132eccae5ee4d5297aa9b177e42edce
66 N6c2ef6c1b9504fff97218eef55e7d5a7
67 N828817289cfe4154a7d18c6d691a552f
68 Nb1c2edf4a09646f6a08da7eb99138840
69 Nfdc42b7a1a3d456ab9b796c3c77e2dd1
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040243916
71 https://doi.org/10.1186/1471-2105-9-239
72 schema:sdDatePublished 2019-04-11T10:37
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N44eadf70c25548bfb20c3ccbd33219f3
75 schema:url https://link.springer.com/10.1186%2F1471-2105-9-239
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N1a3c0020f664406ea00b47928b01aea9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Predictive Value of Tests
81 rdf:type schema:DefinedTerm
82 N1d3d07a920194dfbbd67bcee74fbcf0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Animals
84 rdf:type schema:DefinedTerm
85 N2631ff766a13415aa2e0b43833eb9646 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Computational Biology
87 rdf:type schema:DefinedTerm
88 N2fbf788915ad4e3abeb5e1e88c174ec8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Calibration
90 rdf:type schema:DefinedTerm
91 N4132eccae5ee4d5297aa9b177e42edce schema:name dimensions_id
92 schema:value pub.1040243916
93 rdf:type schema:PropertyValue
94 N4343e88b3d6b432088606b5db3f0480e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Alleles
96 rdf:type schema:DefinedTerm
97 N4361de2c856543fdbdd3edfaae9651ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Chromosome Mapping
99 rdf:type schema:DefinedTerm
100 N44eadf70c25548bfb20c3ccbd33219f3 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N4f392ad4f7574efaabe9256546e8b9cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Gene Library
104 rdf:type schema:DefinedTerm
105 N67d1cfb02c1d4111915f570c41b096c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Caenorhabditis elegans
107 rdf:type schema:DefinedTerm
108 N6c2ef6c1b9504fff97218eef55e7d5a7 schema:name nlm_unique_id
109 schema:value 100965194
110 rdf:type schema:PropertyValue
111 N7b7efb57cef240bda799b46e83f9d474 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Sequence Analysis, DNA
113 rdf:type schema:DefinedTerm
114 N828817289cfe4154a7d18c6d691a552f schema:name pubmed_id
115 schema:value 18485222
116 rdf:type schema:PropertyValue
117 N8728b214df3f43588fea08c87859c361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Reference Values
119 rdf:type schema:DefinedTerm
120 N8d1e55e7098047a3986a7d738d686a96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Neoplasms
122 rdf:type schema:DefinedTerm
123 N98d5f41fee9c4b8699bca3f961d500a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Reference Standards
125 rdf:type schema:DefinedTerm
126 Na1786a0f5389433893ba0fec82024991 schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 Naa12fbed7f3a4f928cf6cbeb76bea3e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Genome, Helminth
130 rdf:type schema:DefinedTerm
131 Nb1c2edf4a09646f6a08da7eb99138840 schema:name doi
132 schema:value 10.1186/1471-2105-9-239
133 rdf:type schema:PropertyValue
134 Nc3c77697fa1b486a88ba473d50bf0624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Ploidies
136 rdf:type schema:DefinedTerm
137 Nc7253a618c484fc6b12f1147895bf615 schema:volumeNumber 9
138 rdf:type schema:PublicationVolume
139 Neff548f181764fcd9f5d644d467856a4 rdf:first sg:person.01101036555.42
140 rdf:rest Nfd11c8a78a894b8b9863ee75418ba750
141 Nfd11c8a78a894b8b9863ee75418ba750 rdf:first sg:person.013076541047.38
142 rdf:rest rdf:nil
143 Nfdc42b7a1a3d456ab9b796c3c77e2dd1 schema:name readcube_id
144 schema:value bfb4e96cd422ced6148ebf7dd9ea8b718fab7f3e37ea50f9788f2bca45a134fe
145 rdf:type schema:PropertyValue
146 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
147 schema:name Mathematical Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
150 schema:name Applied Mathematics
151 rdf:type schema:DefinedTerm
152 sg:grant.2699329 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-9-239
153 rdf:type schema:MonetaryGrant
154 sg:journal.1023786 schema:issn 1471-2105
155 schema:name BMC Bioinformatics
156 rdf:type schema:Periodical
157 sg:person.01101036555.42 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
158 schema:familyName Wendl
159 schema:givenName Michael C
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101036555.42
161 rdf:type schema:Person
162 sg:person.013076541047.38 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
163 schema:familyName Wilson
164 schema:givenName Richard K
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076541047.38
166 rdf:type schema:Person
167 sg:pub.10.1007/s11538-005-9021-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024766336
168 https://doi.org/10.1007/s11538-005-9021-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
171 https://doi.org/10.1038/35057062
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/368032a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010019915
174 https://doi.org/10.1038/368032a0
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/448010b schema:sameAs https://app.dimensions.ai/details/publication/pub.1035588435
177 https://doi.org/10.1038/448010b
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nature06884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672670
180 https://doi.org/10.1038/nature06884
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nbt1105-1333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003344221
183 https://doi.org/10.1038/nbt1105-1333
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
186 https://doi.org/10.1038/nmeth.1179
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nrg1085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050771152
189 https://doi.org/10.1038/nrg1085
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2105-6-245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044852848
192 https://doi.org/10.1186/1471-2105-6-245
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2164-7-275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020268444
195 https://doi.org/10.1186/1471-2164-7-275
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/(sici)1096-8628(19990702)85:1<86::aid-ajmg16>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1020054741
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/0092-8674(76)90055-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043424878
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/0888-7543(88)90007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012677419
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.gde.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007381556
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.0507200102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003027994
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.2335924100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049901547
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.98.3.1124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013878652
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1089/cmb.2006.13.1177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245425
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/11.2.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413474
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/bioinformatics/btl629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017299791
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/humrep/13.2.313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008465320
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gni170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005370988
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1101/gr.6151507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020576715
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1101/gr.655102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015778962
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1101/sqb.2003.68.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060415962
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.1133427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000786924
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.282.5396.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563514
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.311.5767.1544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062591532
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1214/aoms/1177731315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014931079
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1214/aop/1176994951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005386356
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1371/journal.pbio.0050254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942453
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2217/14622416.7.4.597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010813037
244 rdf:type schema:CreativeWork
245 https://doi.org/10.2307/2347661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982828
246 rdf:type schema:CreativeWork
247 https://doi.org/10.2307/3212948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070227148
248 rdf:type schema:CreativeWork
249 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
250 schema:name Genome Sequencing Center and Department of Genetics, Washington University, 63108, St. Louis, MO, USA
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...