Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Kazutaka Katoh, Hiroyuki Toh

ABSTRACT

BACKGROUND: Structural alignment of RNAs is becoming important, since the discovery of functional non-coding RNAs (ncRNAs). Recent studies, mainly based on various approximations of the Sankoff algorithm, have resulted in considerable improvement in the accuracy of pairwise structural alignment. In contrast, for the cases with more than two sequences, the practical merit of structural alignment remains unclear as compared to traditional sequence-based methods, although the importance of multiple structural alignment is widely recognized. RESULTS: We took a different approach from a straightforward extension of the Sankoff algorithm to the multiple alignments from the viewpoints of accuracy and time complexity. As a new option of the MAFFT alignment program, we developed a multiple RNA alignment framework, X-INS-i, which builds a multiple alignment with an iterative method incorporating structural information through two components: (1) pairwise structural alignments by an external pairwise alignment method such as SCARNA or LaRA and (2) a new objective function, Four-way Consistency, derived from the base-pairing probability of every sub-aligned group at every multiple alignment stage. CONCLUSION: The BRAliBASE benchmark showed that X-INS-i outperforms other methods currently available in the sum-of-pairs score (SPS) criterion. As a basis for predicting common secondary structure, the accuracy of the present method is comparable to or rather higher than those of the current leading methods such as RNA Sampler. The X-INS-i framework can be used for building a multiple RNA alignment from any combination of algorithms for pairwise RNA alignment and base-pairing probability. The source code is available at the webpage found in the Availability and requirements section. More... »

PAGES

212

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-212

DOI

http://dx.doi.org/10.1186/1471-2105-9-212

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052288599

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18439255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Untranslated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Digital Medicine Initiative, Kyushu University, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katoh", 
        "givenName": "Kazutaka", 
        "id": "sg:person.011267217121.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267217121.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toh", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.015376345161.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015376345161.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkf436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003376662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004790069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.15.2919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006799019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006943340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007274626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007683223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008319008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(87)90316-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009649341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-0004(93)90088-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011402672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013017359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013478171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00308-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013627034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014962641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014970250", 
          "https://doi.org/10.1186/1471-2105-8-271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015204321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409169102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016701541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-7188-1-19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017761886", 
          "https://doi.org/10.1186/1748-7188-1-19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021608652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022575813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023306749", 
          "https://doi.org/10.1186/1471-2105-9-33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023306749", 
          "https://doi.org/10.1186/1471-2105-9-33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025338146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025361639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-3-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025430652", 
          "https://doi.org/10.1186/1471-2105-3-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-3-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025430652", 
          "https://doi.org/10.1186/1471-2105-3-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026100405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026948542", 
          "https://doi.org/10.1186/1471-2105-8-254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027882374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032154664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bip.360290621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032289021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1060089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036179712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.5.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038331872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040713999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040998602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2795(75)90109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042105629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2795(75)90109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042105629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.22.4673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(02)00008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044140620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044679107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2821705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045219682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045744598", 
          "https://doi.org/10.1186/1471-2105-5-140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045744598", 
          "https://doi.org/10.1186/1471-2105-5-140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048566346", 
          "https://doi.org/10.1186/1471-2105-6-73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051819353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052742521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053620023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/11.5.543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/3.7.565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059980533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2004.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14622416.3.1.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067587685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/4.862007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099202531"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: Structural alignment of RNAs is becoming important, since the discovery of functional non-coding RNAs (ncRNAs). Recent studies, mainly based on various approximations of the Sankoff algorithm, have resulted in considerable improvement in the accuracy of pairwise structural alignment. In contrast, for the cases with more than two sequences, the practical merit of structural alignment remains unclear as compared to traditional sequence-based methods, although the importance of multiple structural alignment is widely recognized.\nRESULTS: We took a different approach from a straightforward extension of the Sankoff algorithm to the multiple alignments from the viewpoints of accuracy and time complexity. As a new option of the MAFFT alignment program, we developed a multiple RNA alignment framework, X-INS-i, which builds a multiple alignment with an iterative method incorporating structural information through two components: (1) pairwise structural alignments by an external pairwise alignment method such as SCARNA or LaRA and (2) a new objective function, Four-way Consistency, derived from the base-pairing probability of every sub-aligned group at every multiple alignment stage.\nCONCLUSION: The BRAliBASE benchmark showed that X-INS-i outperforms other methods currently available in the sum-of-pairs score (SPS) criterion. As a basis for predicting common secondary structure, the accuracy of the present method is comparable to or rather higher than those of the current leading methods such as RNA Sampler. The X-INS-i framework can be used for building a multiple RNA alignment from any combination of algorithms for pairwise RNA alignment and base-pairing probability. The source code is available at the webpage found in the Availability and requirements section.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-212", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework", 
    "pagination": "212", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9116d42174f4090e2eb52c74465dd916a1cfa3bcc5d70a036465a4311538f2f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18439255"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-212"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052288599"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-212", 
      "https://app.dimensions.ai/details/publication/pub.1052288599"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-9-212"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-212'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-212'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-212'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-212'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      21 PREDICATES      89 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-212 schema:about N116bc2f2b91340629f0dd018b26ef34b
2 N8b2b14d08ea646ca87f1699d14ad9909
3 Nc838062942a34916be74bee6a03051eb
4 Nd1a3e5938b45491ba1221acba6631d4c
5 Nd838db60d0744f50abfcafcd9d356d01
6 Ne113d678b7ce41deaa1018a72d8a6ed2
7 Ne126e366cf774c2f820128f62dbbcbdd
8 Ne3eaa355e2b545efb310656baedca0aa
9 Nfff889fb8011429796d07e2022b12b59
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N4835d0bc6c244742b01108d9a3c124d3
13 schema:citation sg:pub.10.1007/bf02603120
14 sg:pub.10.1186/1471-2105-3-18
15 sg:pub.10.1186/1471-2105-5-140
16 sg:pub.10.1186/1471-2105-6-73
17 sg:pub.10.1186/1471-2105-8-254
18 sg:pub.10.1186/1471-2105-8-271
19 sg:pub.10.1186/1471-2105-9-33
20 sg:pub.10.1186/1748-7188-1-19
21 https://doi.org/10.1002/bip.360290621
22 https://doi.org/10.1006/jmbi.1996.0679
23 https://doi.org/10.1006/jmbi.2000.4042
24 https://doi.org/10.1006/jmbi.2001.5351
25 https://doi.org/10.1016/0005-2795(75)90109-9
26 https://doi.org/10.1016/0022-2836(70)90057-4
27 https://doi.org/10.1016/0022-2836(81)90087-5
28 https://doi.org/10.1016/0022-2836(87)90316-0
29 https://doi.org/10.1016/0968-0004(93)90088-5
30 https://doi.org/10.1016/s0022-2836(02)00308-x
31 https://doi.org/10.1016/s0097-8485(02)00008-6
32 https://doi.org/10.1073/pnas.0409169102
33 https://doi.org/10.1093/bioinformatics/11.5.543
34 https://doi.org/10.1093/bioinformatics/14.5.407
35 https://doi.org/10.1093/bioinformatics/bti577
36 https://doi.org/10.1093/bioinformatics/bti582
37 https://doi.org/10.1093/bioinformatics/btk008
38 https://doi.org/10.1093/bioinformatics/btl142
39 https://doi.org/10.1093/bioinformatics/btl177
40 https://doi.org/10.1093/bioinformatics/btl246
41 https://doi.org/10.1093/bioinformatics/btl636
42 https://doi.org/10.1093/bioinformatics/btm017
43 https://doi.org/10.1093/bioinformatics/btm049
44 https://doi.org/10.1093/bioinformatics/btm076
45 https://doi.org/10.1093/bioinformatics/btm146
46 https://doi.org/10.1093/bioinformatics/btm272
47 https://doi.org/10.1093/bioinformatics/btm404
48 https://doi.org/10.1093/bioinformatics/btm525
49 https://doi.org/10.1093/nar/22.22.4673
50 https://doi.org/10.1093/nar/28.15.2919
51 https://doi.org/10.1093/nar/gkf436
52 https://doi.org/10.1093/nar/gkg614
53 https://doi.org/10.1093/nar/gki081
54 https://doi.org/10.1093/nar/gki198
55 https://doi.org/10.1093/nar/gki233
56 https://doi.org/10.1093/nar/gki541
57 https://doi.org/10.1093/protein/3.7.565
58 https://doi.org/10.1101/gr.2821705
59 https://doi.org/10.1109/tcbb.2004.11
60 https://doi.org/10.1126/science.1060089
61 https://doi.org/10.1371/journal.pcbi.0030193
62 https://doi.org/10.1517/14622416.3.1.131
63 https://doi.org/10.2514/4.862007
64 schema:datePublished 2008-12
65 schema:datePublishedReg 2008-12-01
66 schema:description BACKGROUND: Structural alignment of RNAs is becoming important, since the discovery of functional non-coding RNAs (ncRNAs). Recent studies, mainly based on various approximations of the Sankoff algorithm, have resulted in considerable improvement in the accuracy of pairwise structural alignment. In contrast, for the cases with more than two sequences, the practical merit of structural alignment remains unclear as compared to traditional sequence-based methods, although the importance of multiple structural alignment is widely recognized. RESULTS: We took a different approach from a straightforward extension of the Sankoff algorithm to the multiple alignments from the viewpoints of accuracy and time complexity. As a new option of the MAFFT alignment program, we developed a multiple RNA alignment framework, X-INS-i, which builds a multiple alignment with an iterative method incorporating structural information through two components: (1) pairwise structural alignments by an external pairwise alignment method such as SCARNA or LaRA and (2) a new objective function, Four-way Consistency, derived from the base-pairing probability of every sub-aligned group at every multiple alignment stage. CONCLUSION: The BRAliBASE benchmark showed that X-INS-i outperforms other methods currently available in the sum-of-pairs score (SPS) criterion. As a basis for predicting common secondary structure, the accuracy of the present method is comparable to or rather higher than those of the current leading methods such as RNA Sampler. The X-INS-i framework can be used for building a multiple RNA alignment from any combination of algorithms for pairwise RNA alignment and base-pairing probability. The source code is available at the webpage found in the Availability and requirements section.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree true
70 schema:isPartOf N2decb330cb644be18f114adae1a7cb4b
71 N31580f5913fb4844be288d265775e197
72 sg:journal.1023786
73 schema:name Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework
74 schema:pagination 212
75 schema:productId N18872710636043c9bbc937584ceec10c
76 N3036f69edade4e859fb0aa9e00e0a214
77 N3c88e54f3d1a462f999780f64a05a0ed
78 N4789b436ad244e6f910c9b7a2ce6365f
79 N70af67bcf3e04793bcc64a0be354a0b7
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052288599
81 https://doi.org/10.1186/1471-2105-9-212
82 schema:sdDatePublished 2019-04-10T22:30
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nc302c54e8a8b4c7d830845d2941c2c9b
85 schema:url http://link.springer.com/10.1186%2F1471-2105-9-212
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N116bc2f2b91340629f0dd018b26ef34b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Base Sequence
91 rdf:type schema:DefinedTerm
92 N18872710636043c9bbc937584ceec10c schema:name pubmed_id
93 schema:value 18439255
94 rdf:type schema:PropertyValue
95 N2decb330cb644be18f114adae1a7cb4b schema:volumeNumber 9
96 rdf:type schema:PublicationVolume
97 N3036f69edade4e859fb0aa9e00e0a214 schema:name readcube_id
98 schema:value f9116d42174f4090e2eb52c74465dd916a1cfa3bcc5d70a036465a4311538f2f
99 rdf:type schema:PropertyValue
100 N31580f5913fb4844be288d265775e197 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 N3c88e54f3d1a462f999780f64a05a0ed schema:name dimensions_id
103 schema:value pub.1052288599
104 rdf:type schema:PropertyValue
105 N4789b436ad244e6f910c9b7a2ce6365f schema:name nlm_unique_id
106 schema:value 100965194
107 rdf:type schema:PropertyValue
108 N4835d0bc6c244742b01108d9a3c124d3 rdf:first sg:person.011267217121.93
109 rdf:rest Nf1db5602b32a49d5aaaa8af72b4fe851
110 N70af67bcf3e04793bcc64a0be354a0b7 schema:name doi
111 schema:value 10.1186/1471-2105-9-212
112 rdf:type schema:PropertyValue
113 N8b2b14d08ea646ca87f1699d14ad9909 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Sensitivity and Specificity
115 rdf:type schema:DefinedTerm
116 Nc302c54e8a8b4c7d830845d2941c2c9b schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nc838062942a34916be74bee6a03051eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Molecular Sequence Data
120 rdf:type schema:DefinedTerm
121 Nd1a3e5938b45491ba1221acba6631d4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Sequence Alignment
123 rdf:type schema:DefinedTerm
124 Nd838db60d0744f50abfcafcd9d356d01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Sequence Analysis, RNA
126 rdf:type schema:DefinedTerm
127 Ne113d678b7ce41deaa1018a72d8a6ed2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name RNA, Untranslated
129 rdf:type schema:DefinedTerm
130 Ne126e366cf774c2f820128f62dbbcbdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Algorithms
132 rdf:type schema:DefinedTerm
133 Ne3eaa355e2b545efb310656baedca0aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Structure-Activity Relationship
135 rdf:type schema:DefinedTerm
136 Nf1db5602b32a49d5aaaa8af72b4fe851 rdf:first sg:person.015376345161.89
137 rdf:rest rdf:nil
138 Nfff889fb8011429796d07e2022b12b59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Reproducibility of Results
140 rdf:type schema:DefinedTerm
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
145 schema:name Genetics
146 rdf:type schema:DefinedTerm
147 sg:journal.1023786 schema:issn 1471-2105
148 schema:name BMC Bioinformatics
149 rdf:type schema:Periodical
150 sg:person.011267217121.93 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
151 schema:familyName Katoh
152 schema:givenName Kazutaka
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267217121.93
154 rdf:type schema:Person
155 sg:person.015376345161.89 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
156 schema:familyName Toh
157 schema:givenName Hiroyuki
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015376345161.89
159 rdf:type schema:Person
160 sg:pub.10.1007/bf02603120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022962956
161 https://doi.org/10.1007/bf02603120
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1471-2105-3-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025430652
164 https://doi.org/10.1186/1471-2105-3-18
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2105-5-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045744598
167 https://doi.org/10.1186/1471-2105-5-140
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2105-6-73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048566346
170 https://doi.org/10.1186/1471-2105-6-73
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2105-8-254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026948542
173 https://doi.org/10.1186/1471-2105-8-254
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2105-8-271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014970250
176 https://doi.org/10.1186/1471-2105-8-271
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2105-9-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023306749
179 https://doi.org/10.1186/1471-2105-9-33
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1748-7188-1-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017761886
182 https://doi.org/10.1186/1748-7188-1-19
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/bip.360290621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032289021
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1006/jmbi.1996.0679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026100405
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1006/jmbi.2000.4042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022575813
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1006/jmbi.2001.5351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040713999
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/0005-2795(75)90109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042105629
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/0022-2836(87)90316-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009649341
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/0968-0004(93)90088-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011402672
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0022-2836(02)00308-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013627034
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0097-8485(02)00008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044140620
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1073/pnas.0409169102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016701541
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/11.5.543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413526
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bioinformatics/14.5.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038331872
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/bti577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007274626
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/bioinformatics/bti582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021608652
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/btk008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620023
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/btl142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025361639
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/bioinformatics/btl177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006943340
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/bioinformatics/btl246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052742521
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/bioinformatics/btl636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013478171
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/bioinformatics/btm017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025338146
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/bioinformatics/btm049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051819353
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/bioinformatics/btm076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027882374
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/bioinformatics/btm146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040998602
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/bioinformatics/btm272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004790069
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/btm404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007683223
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/btm525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044679107
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/28.15.2919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006799019
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/nar/gkf436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003376662
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/gkg614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015204321
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/gki081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286749
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/gki198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013017359
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/nar/gki233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032154664
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/nar/gki541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008319008
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/protein/3.7.565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059980533
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1101/gr.2821705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045219682
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1109/tcbb.2004.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540428
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.1060089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036179712
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pcbi.0030193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014962641
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1517/14622416.3.1.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067587685
267 rdf:type schema:CreativeWork
268 https://doi.org/10.2514/4.862007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099202531
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.177174.3 schema:alternateName Kyushu University
271 schema:name Digital Medicine Initiative, Kyushu University, 812-8582, Fukuoka, Japan
272 Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...