Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Harald Binder, Martin Schumacher

ABSTRACT

BACKGROUND: When predictive survival models are built from high-dimensional data, there are often additional covariates, such as clinical scores, that by all means have to be included into the final model. While there are several techniques for the fitting of sparse high-dimensional survival models by penalized parameter estimation, none allows for explicit consideration of such mandatory covariates. RESULTS: We introduce a new boosting algorithm for censored time-to-event data that shares the favorable properties of existing approaches, i.e., it results in sparse models with good prediction performance, but uses an offset-based update mechanism. The latter allows for tailored penalization of the covariates under consideration. Specifically, unpenalized mandatory covariates can be introduced. Microarray survival data from patients with diffuse large B-cell lymphoma, in combination with the recent, bootstrap-based prediction error curve technique, is used to illustrate the advantages of the new procedure. CONCLUSION: It is demonstrated that it can be highly beneficial in terms of prediction performance to use an estimation procedure that incorporates mandatory covariates into high-dimensional survival models. The new approach also allows to answer the question whether improved predictions are obtained by including microarray features in addition to classical clinical criteria. More... »

PAGES

14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-9-14

DOI

http://dx.doi.org/10.1186/1471-2105-9-14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034538282

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18186927


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphoma, B-Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Medical Center Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.7708.8", 
          "name": [
            "Freiburg Center for Data Analysis and Modeling, University of Freiburg, Eckerstr. 1, 79104, Freiburg, Germany", 
            "Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Stefan-Meier-Str. 26, 79104, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Binder", 
        "givenName": "Harald", 
        "id": "sg:person.01172316163.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172316163.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.7708.8", 
          "name": [
            "Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Stefan-Meier-Str. 26, 79104, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schumacher", 
        "givenName": "Martin", 
        "id": "sg:person.0646232763.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646232763.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2006.00660.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000047685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009287568", 
          "https://doi.org/10.1186/1471-2105-8-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009434179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010865827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxj006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011156646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxj006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011156646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199309303291402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013554742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053606000000092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015491145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1016218223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020629296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00532.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021238034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00532.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021238034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780132307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023272851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200610301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024153116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2007.00607.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026144624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2007.00832.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026177853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032103692", 
          "https://doi.org/10.1186/1471-2105-8-192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2006.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037877312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053604000000067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038945634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa012914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040112680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-sts242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049744920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-ejs004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389844"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: When predictive survival models are built from high-dimensional data, there are often additional covariates, such as clinical scores, that by all means have to be included into the final model. While there are several techniques for the fitting of sparse high-dimensional survival models by penalized parameter estimation, none allows for explicit consideration of such mandatory covariates.\nRESULTS: We introduce a new boosting algorithm for censored time-to-event data that shares the favorable properties of existing approaches, i.e., it results in sparse models with good prediction performance, but uses an offset-based update mechanism. The latter allows for tailored penalization of the covariates under consideration. Specifically, unpenalized mandatory covariates can be introduced. Microarray survival data from patients with diffuse large B-cell lymphoma, in combination with the recent, bootstrap-based prediction error curve technique, is used to illustrate the advantages of the new procedure.\nCONCLUSION: It is demonstrated that it can be highly beneficial in terms of prediction performance to use an estimation procedure that incorporates mandatory covariates into high-dimensional survival models. The new approach also allows to answer the question whether improved predictions are obtained by including microarray features in addition to classical clinical criteria.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-9-14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models", 
    "pagination": "14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a487416c6563284f2fa9d5c8322b6b1cea456825668dd380ff11b347e64d0051"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18186927"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-9-14"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034538282"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-9-14", 
      "https://app.dimensions.ai/details/publication/pub.1034538282"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-9-14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-9-14'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      64 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-9-14 schema:about N02713cd6434141408fbafe131668b56d
2 N0d24378f7a1641d69da539c9ca5cfc04
3 N1977cc1f505b49699e54f1fe68880a64
4 N23356783f09045ecb38a3e45b2aa4d2f
5 N247aa4529f594ee9b0f6d7b187513ff1
6 N27cef5263d1f4787b8af9b59d0e657c5
7 N2abce4f476164a0493c3684e1b9f494c
8 N578866161482436bb6855e80f6125df6
9 N5aeebacf8fea436db79da52d18f120c4
10 N639b2d29adbf431db14955d61d1e6e98
11 N8220f86fce5a4568a481efb49cf60375
12 N9d3af05439e04eb9b2f33a5fa6676e3e
13 Na4adb8d1931e428eb6349492cd8066bd
14 Nb1db2b57a64f46e1b85db4f34053964f
15 Nc0777c249bd346f2b5540c7c2126ac9f
16 Nca4be1ef1c6841fc9c06c5be3ddf973a
17 anzsrc-for:01
18 anzsrc-for:0104
19 schema:author N03e2d7e77c354b67b65f73f13bb330b3
20 schema:citation sg:pub.10.1186/1471-2105-8-192
21 sg:pub.10.1186/1471-2105-8-60
22 https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
23 https://doi.org/10.1002/bimj.200610301
24 https://doi.org/10.1002/sim.4780132307
25 https://doi.org/10.1016/j.csda.2006.11.041
26 https://doi.org/10.1056/nejm199309303291402
27 https://doi.org/10.1056/nejmoa012914
28 https://doi.org/10.1093/bioinformatics/btm232
29 https://doi.org/10.1093/biostatistics/kxj006
30 https://doi.org/10.1111/j.1467-9868.2005.00532.x
31 https://doi.org/10.1111/j.1467-9868.2007.00607.x
32 https://doi.org/10.1111/j.1541-0420.2006.00660.x
33 https://doi.org/10.1111/j.1541-0420.2007.00832.x
34 https://doi.org/10.1214/009053604000000067
35 https://doi.org/10.1214/009053606000000092
36 https://doi.org/10.1214/07-ejs004
37 https://doi.org/10.1214/07-sts242
38 https://doi.org/10.1214/aos/1016218223
39 schema:datePublished 2008-12
40 schema:datePublishedReg 2008-12-01
41 schema:description BACKGROUND: When predictive survival models are built from high-dimensional data, there are often additional covariates, such as clinical scores, that by all means have to be included into the final model. While there are several techniques for the fitting of sparse high-dimensional survival models by penalized parameter estimation, none allows for explicit consideration of such mandatory covariates. RESULTS: We introduce a new boosting algorithm for censored time-to-event data that shares the favorable properties of existing approaches, i.e., it results in sparse models with good prediction performance, but uses an offset-based update mechanism. The latter allows for tailored penalization of the covariates under consideration. Specifically, unpenalized mandatory covariates can be introduced. Microarray survival data from patients with diffuse large B-cell lymphoma, in combination with the recent, bootstrap-based prediction error curve technique, is used to illustrate the advantages of the new procedure. CONCLUSION: It is demonstrated that it can be highly beneficial in terms of prediction performance to use an estimation procedure that incorporates mandatory covariates into high-dimensional survival models. The new approach also allows to answer the question whether improved predictions are obtained by including microarray features in addition to classical clinical criteria.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N0bbfaa93d19640d38c8f80073fbdaded
46 N4f99ed9c45f9464a980677ac47930491
47 sg:journal.1023786
48 schema:name Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
49 schema:pagination 14
50 schema:productId N3d9b7b8b6a1841589ad5f668272c9c6c
51 N6c5e7bcca14c4876be15c124f263b01a
52 N9d2cb1fb45a54e13b24a2f67c662fef2
53 Na67f2edf22334d6fa64a7f287ed3c2df
54 Ne51d4570a63e4b75b4cc679bf2c9b633
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034538282
56 https://doi.org/10.1186/1471-2105-9-14
57 schema:sdDatePublished 2019-04-10T23:23
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N993efebe549a4639bdc1742c43b53f68
60 schema:url http://link.springer.com/10.1186%2F1471-2105-9-14
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N02713cd6434141408fbafe131668b56d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Reproducibility of Results
66 rdf:type schema:DefinedTerm
67 N03e2d7e77c354b67b65f73f13bb330b3 rdf:first sg:person.01172316163.35
68 rdf:rest Ncf8bbb2704eb4b9a93a3b2d399749981
69 N0bbfaa93d19640d38c8f80073fbdaded schema:volumeNumber 9
70 rdf:type schema:PublicationVolume
71 N0d24378f7a1641d69da539c9ca5cfc04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Biomarkers, Tumor
73 rdf:type schema:DefinedTerm
74 N1977cc1f505b49699e54f1fe68880a64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Neoplasm Proteins
76 rdf:type schema:DefinedTerm
77 N23356783f09045ecb38a3e45b2aa4d2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Lymphoma, B-Cell
79 rdf:type schema:DefinedTerm
80 N247aa4529f594ee9b0f6d7b187513ff1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Proportional Hazards Models
82 rdf:type schema:DefinedTerm
83 N27cef5263d1f4787b8af9b59d0e657c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Survival Rate
85 rdf:type schema:DefinedTerm
86 N2abce4f476164a0493c3684e1b9f494c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Prevalence
88 rdf:type schema:DefinedTerm
89 N3d9b7b8b6a1841589ad5f668272c9c6c schema:name doi
90 schema:value 10.1186/1471-2105-9-14
91 rdf:type schema:PropertyValue
92 N4f99ed9c45f9464a980677ac47930491 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N578866161482436bb6855e80f6125df6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Gene Expression Profiling
96 rdf:type schema:DefinedTerm
97 N5aeebacf8fea436db79da52d18f120c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Survival Analysis
99 rdf:type schema:DefinedTerm
100 N639b2d29adbf431db14955d61d1e6e98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Humans
102 rdf:type schema:DefinedTerm
103 N6c5e7bcca14c4876be15c124f263b01a schema:name readcube_id
104 schema:value a487416c6563284f2fa9d5c8322b6b1cea456825668dd380ff11b347e64d0051
105 rdf:type schema:PropertyValue
106 N8220f86fce5a4568a481efb49cf60375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Software
108 rdf:type schema:DefinedTerm
109 N993efebe549a4639bdc1742c43b53f68 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N9d2cb1fb45a54e13b24a2f67c662fef2 schema:name pubmed_id
112 schema:value 18186927
113 rdf:type schema:PropertyValue
114 N9d3af05439e04eb9b2f33a5fa6676e3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Computer Simulation
116 rdf:type schema:DefinedTerm
117 Na4adb8d1931e428eb6349492cd8066bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Sensitivity and Specificity
119 rdf:type schema:DefinedTerm
120 Na67f2edf22334d6fa64a7f287ed3c2df schema:name dimensions_id
121 schema:value pub.1034538282
122 rdf:type schema:PropertyValue
123 Nb1db2b57a64f46e1b85db4f34053964f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Models, Biological
125 rdf:type schema:DefinedTerm
126 Nc0777c249bd346f2b5540c7c2126ac9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Risk Assessment
128 rdf:type schema:DefinedTerm
129 Nca4be1ef1c6841fc9c06c5be3ddf973a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Risk Factors
131 rdf:type schema:DefinedTerm
132 Ncf8bbb2704eb4b9a93a3b2d399749981 rdf:first sg:person.0646232763.44
133 rdf:rest rdf:nil
134 Ne51d4570a63e4b75b4cc679bf2c9b633 schema:name nlm_unique_id
135 schema:value 100965194
136 rdf:type schema:PropertyValue
137 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
138 schema:name Mathematical Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
141 schema:name Statistics
142 rdf:type schema:DefinedTerm
143 sg:journal.1023786 schema:issn 1471-2105
144 schema:name BMC Bioinformatics
145 rdf:type schema:Periodical
146 sg:person.01172316163.35 schema:affiliation https://www.grid.ac/institutes/grid.7708.8
147 schema:familyName Binder
148 schema:givenName Harald
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172316163.35
150 rdf:type schema:Person
151 sg:person.0646232763.44 schema:affiliation https://www.grid.ac/institutes/grid.7708.8
152 schema:familyName Schumacher
153 schema:givenName Martin
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646232763.44
155 rdf:type schema:Person
156 sg:pub.10.1186/1471-2105-8-192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032103692
157 https://doi.org/10.1186/1471-2105-8-192
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1471-2105-8-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009287568
160 https://doi.org/10.1186/1471-2105-8-60
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009434179
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/bimj.200610301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024153116
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/sim.4780132307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023272851
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.csda.2006.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037877312
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1056/nejm199309303291402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013554742
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1056/nejmoa012914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040112680
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/bioinformatics/btm232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010865827
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/biostatistics/kxj006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011156646
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1467-9868.2005.00532.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021238034
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/j.1467-9868.2007.00607.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026144624
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/j.1541-0420.2006.00660.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000047685
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/j.1541-0420.2007.00832.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026177853
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1214/009053604000000067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038945634
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1214/009053606000000092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015491145
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1214/07-ejs004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389844
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1214/07-sts242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049744920
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1214/aos/1016218223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020629296
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.7708.8 schema:alternateName University Medical Center Freiburg
197 schema:name Freiburg Center for Data Analysis and Modeling, University of Freiburg, Eckerstr. 1, 79104, Freiburg, Germany
198 Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Stefan-Meier-Str. 26, 79104, Freiburg, Germany
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...