FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Limin Fu, Enzo Medico

ABSTRACT

BACKGROUND: Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process. RESULTS: The clustering algorithm is named Fuzzy clustering by Local Approximation of MEmbership (FLAME). Distinctive elements of FLAME are: (i) definition of the neighborhood of each object (gene or sample) and identification of objects with "archetypal" features named Cluster Supporting Objects, around which to construct the clusters; (ii) assignment to each object of a fuzzy membership vector approximated from the memberships of its neighboring objects, by an iterative converging process in which membership spreads from the Cluster Supporting Objects through their neighbors. Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-organizing maps (SOM) showed that data partitions generated by FLAME are not superimposable to those of other methods and, although different types of datasets are better partitioned by different algorithms, FLAME displays the best overall performance. FLAME is implemented, together with all the above-mentioned algorithms, in a C++ software with graphical interface for Linux and Windows, capable of handling very large datasets, named Gene Expression Data Analysis Studio (GEDAS), freely available under GNU General Public License. CONCLUSION: The FLAME algorithm has intrinsic advantages, such as the ability to capture non-linear relationships and non-globular clusters, the automated definition of the number of clusters, and the identification of cluster outliers, i.e. genes that are not assigned to any cluster. As a result, clusters are more internally homogeneous and more diverse from each other, and provide better partitioning of biological functions. The clustering algorithm can be easily extended to applications different from gene expression analysis. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-3

DOI

http://dx.doi.org/10.1186/1471-2105-8-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009905742

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17204155


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypoxia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Programming Languages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Laboratory of Functional Genomics, The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino, School of Medicine, 10060, Candiolo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Limin", 
        "id": "sg:person.01005633705.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005633705.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Laboratory of Functional Genomics, The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino, School of Medicine, 10060, Candiolo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medico", 
        "givenName": "Enzo", 
        "id": "sg:person.01103126067.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103126067.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tig.2006.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005391166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.4.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008331774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s2-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010007669", 
          "https://doi.org/10.1186/1471-2105-6-s2-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013523365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.9.12.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014767256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018382979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-11-research0059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022771756", 
          "https://doi.org/10.1186/gb-2002-3-11-research0059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927529", 
          "https://doi.org/10.1186/1471-2105-6-289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927529", 
          "https://doi.org/10.1186/1471-2105-6-289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/331499.331504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026347712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.10.977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029038829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032202599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037537394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0030047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039127082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0030047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039127082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040797632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.2000.6187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041734337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.6.2907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(00)00167-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047596917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051806676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052662045", 
          "https://doi.org/10.1186/jbiol16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053473483"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process.\nRESULTS: The clustering algorithm is named Fuzzy clustering by Local Approximation of MEmbership (FLAME). Distinctive elements of FLAME are: (i) definition of the neighborhood of each object (gene or sample) and identification of objects with \"archetypal\" features named Cluster Supporting Objects, around which to construct the clusters; (ii) assignment to each object of a fuzzy membership vector approximated from the memberships of its neighboring objects, by an iterative converging process in which membership spreads from the Cluster Supporting Objects through their neighbors. Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-organizing maps (SOM) showed that data partitions generated by FLAME are not superimposable to those of other methods and, although different types of datasets are better partitioned by different algorithms, FLAME displays the best overall performance. FLAME is implemented, together with all the above-mentioned algorithms, in a C++ software with graphical interface for Linux and Windows, capable of handling very large datasets, named Gene Expression Data Analysis Studio (GEDAS), freely available under GNU General Public License.\nCONCLUSION: The FLAME algorithm has intrinsic advantages, such as the ability to capture non-linear relationships and non-globular clusters, the automated definition of the number of clusters, and the identification of cluster outliers, i.e. genes that are not assigned to any cluster. As a result, clusters are more internally homogeneous and more diverse from each other, and provide better partitioning of biological functions. The clustering algorithm can be easily extended to applications different from gene expression analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3764494", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f30caf8c2d32292ffb57e8f7635021819b0e7968a61163c2897c1288c5aa973"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17204155"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009905742"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-3", 
      "https://app.dimensions.ai/details/publication/pub.1009905742"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-8-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-3'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      67 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-3 schema:about N034576d3d8ce406c88dfadbf8eabf7e0
2 N051cb018bc934be69b1bb81c01f003e3
3 N1029d9bf8b6845bcba90b3bb18d4a9a7
4 N121afd04da0a4840b0033668f8966279
5 N5224c782bdd148cb955002697701bb2f
6 N59b61cc81101498db409cd6da31a64c0
7 N60c111df7b7f4671b8eee35cdd7d46a5
8 N6fe56c163a9645a98698b2c695b3e644
9 N7439e40438d5449d9f259e84046a6c18
10 N7789a8ecae3342019d201842dc289d2d
11 N87e156bf2c3441639fd650beaa4ebc24
12 Na80a23b4de6f4ca2add89eab91c97167
13 Nc1a76757078540f79d01ee46b2c08ad7
14 Nec396d2106e84a7f942a9b9fb79d7720
15 Nef6779968fb0407e8c09bbd56c447634
16 anzsrc-for:08
17 anzsrc-for:0801
18 schema:author N6b3f100aff3a4ba198d6cbe0b739ace0
19 schema:citation sg:pub.10.1038/10343
20 sg:pub.10.1186/1471-2105-6-289
21 sg:pub.10.1186/1471-2105-6-s2-s10
22 sg:pub.10.1186/gb-2002-3-11-research0059
23 sg:pub.10.1186/jbiol16
24 https://doi.org/10.1006/geno.2000.6187
25 https://doi.org/10.1006/jmbi.2000.3519
26 https://doi.org/10.1016/j.tig.2006.01.006
27 https://doi.org/10.1016/s0031-3203(00)00167-9
28 https://doi.org/10.1073/pnas.95.25.14863
29 https://doi.org/10.1073/pnas.96.6.2907
30 https://doi.org/10.1091/mbc.9.12.3273
31 https://doi.org/10.1093/bioinformatics/17.10.977
32 https://doi.org/10.1093/bioinformatics/17.4.309
33 https://doi.org/10.1093/bioinformatics/17.suppl_1.s306
34 https://doi.org/10.1093/bioinformatics/btg1078
35 https://doi.org/10.1093/bioinformatics/btg119
36 https://doi.org/10.1093/bioinformatics/bth142
37 https://doi.org/10.1093/bioinformatics/bth177
38 https://doi.org/10.1093/bioinformatics/bti517
39 https://doi.org/10.1126/science.290.5500.2323
40 https://doi.org/10.1145/331499.331504
41 https://doi.org/10.1371/journal.pmed.0030047
42 schema:datePublished 2007-12
43 schema:datePublishedReg 2007-12-01
44 schema:description BACKGROUND: Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process. RESULTS: The clustering algorithm is named Fuzzy clustering by Local Approximation of MEmbership (FLAME). Distinctive elements of FLAME are: (i) definition of the neighborhood of each object (gene or sample) and identification of objects with "archetypal" features named Cluster Supporting Objects, around which to construct the clusters; (ii) assignment to each object of a fuzzy membership vector approximated from the memberships of its neighboring objects, by an iterative converging process in which membership spreads from the Cluster Supporting Objects through their neighbors. Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-organizing maps (SOM) showed that data partitions generated by FLAME are not superimposable to those of other methods and, although different types of datasets are better partitioned by different algorithms, FLAME displays the best overall performance. FLAME is implemented, together with all the above-mentioned algorithms, in a C++ software with graphical interface for Linux and Windows, capable of handling very large datasets, named Gene Expression Data Analysis Studio (GEDAS), freely available under GNU General Public License. CONCLUSION: The FLAME algorithm has intrinsic advantages, such as the ability to capture non-linear relationships and non-globular clusters, the automated definition of the number of clusters, and the identification of cluster outliers, i.e. genes that are not assigned to any cluster. As a result, clusters are more internally homogeneous and more diverse from each other, and provide better partitioning of biological functions. The clustering algorithm can be easily extended to applications different from gene expression analysis.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf Nd8f1071e15fa423db6706381876b063e
49 Nfb5dff426d2443a08ef62cfa6cdef28f
50 sg:journal.1023786
51 schema:name FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
52 schema:pagination 3
53 schema:productId N4e445bef80d749fe92a6b6708e366603
54 N52482496f61b4fdf9b832cca03c07fb5
55 N5d09428e572e44e9862363c6e552f7f3
56 N84be27caad5945aea457ecddcf6c5827
57 Nb69348dcd3f9464baa9da53f4e03b48d
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009905742
59 https://doi.org/10.1186/1471-2105-8-3
60 schema:sdDatePublished 2019-04-10T14:07
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N1823b723259443debff45710d9011796
63 schema:url http://link.springer.com/10.1186%2F1471-2105-8-3
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N034576d3d8ce406c88dfadbf8eabf7e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Cluster Analysis
69 rdf:type schema:DefinedTerm
70 N051cb018bc934be69b1bb81c01f003e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Humans
72 rdf:type schema:DefinedTerm
73 N1029d9bf8b6845bcba90b3bb18d4a9a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Models, Statistical
75 rdf:type schema:DefinedTerm
76 N121afd04da0a4840b0033668f8966279 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Software
78 rdf:type schema:DefinedTerm
79 N1823b723259443debff45710d9011796 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N4e445bef80d749fe92a6b6708e366603 schema:name doi
82 schema:value 10.1186/1471-2105-8-3
83 rdf:type schema:PropertyValue
84 N5224c782bdd148cb955002697701bb2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Algorithms
86 rdf:type schema:DefinedTerm
87 N52482496f61b4fdf9b832cca03c07fb5 schema:name dimensions_id
88 schema:value pub.1009905742
89 rdf:type schema:PropertyValue
90 N59b61cc81101498db409cd6da31a64c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Genetic
92 rdf:type schema:DefinedTerm
93 N5d09428e572e44e9862363c6e552f7f3 schema:name readcube_id
94 schema:value 2f30caf8c2d32292ffb57e8f7635021819b0e7968a61163c2897c1288c5aa973
95 rdf:type schema:PropertyValue
96 N60c111df7b7f4671b8eee35cdd7d46a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Mice
98 rdf:type schema:DefinedTerm
99 N6b3f100aff3a4ba198d6cbe0b739ace0 rdf:first sg:person.01005633705.76
100 rdf:rest Nf375bc1730c84a2889fdae490c6a096a
101 N6fe56c163a9645a98698b2c695b3e644 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Genomics
103 rdf:type schema:DefinedTerm
104 N7439e40438d5449d9f259e84046a6c18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Hypoxia
106 rdf:type schema:DefinedTerm
107 N7789a8ecae3342019d201842dc289d2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Animals
109 rdf:type schema:DefinedTerm
110 N84be27caad5945aea457ecddcf6c5827 schema:name nlm_unique_id
111 schema:value 100965194
112 rdf:type schema:PropertyValue
113 N87e156bf2c3441639fd650beaa4ebc24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Computational Biology
115 rdf:type schema:DefinedTerm
116 Na80a23b4de6f4ca2add89eab91c97167 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Pattern Recognition, Automated
118 rdf:type schema:DefinedTerm
119 Nb69348dcd3f9464baa9da53f4e03b48d schema:name pubmed_id
120 schema:value 17204155
121 rdf:type schema:PropertyValue
122 Nc1a76757078540f79d01ee46b2c08ad7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Oligonucleotide Array Sequence Analysis
124 rdf:type schema:DefinedTerm
125 Nd8f1071e15fa423db6706381876b063e schema:issueNumber 1
126 rdf:type schema:PublicationIssue
127 Nec396d2106e84a7f942a9b9fb79d7720 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Programming Languages
129 rdf:type schema:DefinedTerm
130 Nef6779968fb0407e8c09bbd56c447634 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Databases, Genetic
132 rdf:type schema:DefinedTerm
133 Nf375bc1730c84a2889fdae490c6a096a rdf:first sg:person.01103126067.66
134 rdf:rest rdf:nil
135 Nfb5dff426d2443a08ef62cfa6cdef28f schema:volumeNumber 8
136 rdf:type schema:PublicationVolume
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:grant.3764494 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-3
144 rdf:type schema:MonetaryGrant
145 sg:journal.1023786 schema:issn 1471-2105
146 schema:name BMC Bioinformatics
147 rdf:type schema:Periodical
148 sg:person.01005633705.76 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
149 schema:familyName Fu
150 schema:givenName Limin
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005633705.76
152 rdf:type schema:Person
153 sg:person.01103126067.66 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
154 schema:familyName Medico
155 schema:givenName Enzo
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103126067.66
157 rdf:type schema:Person
158 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
159 https://doi.org/10.1038/10343
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2105-6-289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024927529
162 https://doi.org/10.1186/1471-2105-6-289
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/1471-2105-6-s2-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010007669
165 https://doi.org/10.1186/1471-2105-6-s2-s10
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/gb-2002-3-11-research0059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022771756
168 https://doi.org/10.1186/gb-2002-3-11-research0059
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/jbiol16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052662045
171 https://doi.org/10.1186/jbiol16
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/geno.2000.6187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041734337
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1006/jmbi.2000.3519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037537394
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.tig.2006.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005391166
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0031-3203(00)00167-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047596917
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.96.6.2907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042350330
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1091/mbc.9.12.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767256
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/17.10.977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029038829
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/17.4.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008331774
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/17.suppl_1.s306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411105
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btg1078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018382979
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/btg119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040797632
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/bth142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013523365
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/bth177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053473483
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/bti517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032202599
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.290.5500.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051806676
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1145/331499.331504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026347712
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1371/journal.pmed.0030047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039127082
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.7605.4 schema:alternateName University of Turin
210 schema:name Laboratory of Functional Genomics, The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino, School of Medicine, 10060, Candiolo, Italy
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...