FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Limin Fu, Enzo Medico

ABSTRACT

BACKGROUND: Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process. RESULTS: The clustering algorithm is named Fuzzy clustering by Local Approximation of MEmbership (FLAME). Distinctive elements of FLAME are: (i) definition of the neighborhood of each object (gene or sample) and identification of objects with "archetypal" features named Cluster Supporting Objects, around which to construct the clusters; (ii) assignment to each object of a fuzzy membership vector approximated from the memberships of its neighboring objects, by an iterative converging process in which membership spreads from the Cluster Supporting Objects through their neighbors. Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-organizing maps (SOM) showed that data partitions generated by FLAME are not superimposable to those of other methods and, although different types of datasets are better partitioned by different algorithms, FLAME displays the best overall performance. FLAME is implemented, together with all the above-mentioned algorithms, in a C++ software with graphical interface for Linux and Windows, capable of handling very large datasets, named Gene Expression Data Analysis Studio (GEDAS), freely available under GNU General Public License. CONCLUSION: The FLAME algorithm has intrinsic advantages, such as the ability to capture non-linear relationships and non-globular clusters, the automated definition of the number of clusters, and the identification of cluster outliers, i.e. genes that are not assigned to any cluster. As a result, clusters are more internally homogeneous and more diverse from each other, and provide better partitioning of biological functions. The clustering algorithm can be easily extended to applications different from gene expression analysis. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-3

DOI

http://dx.doi.org/10.1186/1471-2105-8-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009905742

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17204155


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypoxia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Programming Languages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Laboratory of Functional Genomics, The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino, School of Medicine, 10060, Candiolo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Limin", 
        "id": "sg:person.01005633705.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005633705.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Laboratory of Functional Genomics, The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino, School of Medicine, 10060, Candiolo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medico", 
        "givenName": "Enzo", 
        "id": "sg:person.01103126067.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103126067.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tig.2006.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005391166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.4.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008331774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s2-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010007669", 
          "https://doi.org/10.1186/1471-2105-6-s2-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013523365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.9.12.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014767256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018382979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-11-research0059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022771756", 
          "https://doi.org/10.1186/gb-2002-3-11-research0059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927529", 
          "https://doi.org/10.1186/1471-2105-6-289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927529", 
          "https://doi.org/10.1186/1471-2105-6-289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/331499.331504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026347712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.10.977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029038829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032202599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037537394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0030047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039127082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0030047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039127082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040797632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.2000.6187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041734337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.6.2907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(00)00167-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047596917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051806676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052662045", 
          "https://doi.org/10.1186/jbiol16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053473483"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process.\nRESULTS: The clustering algorithm is named Fuzzy clustering by Local Approximation of MEmbership (FLAME). Distinctive elements of FLAME are: (i) definition of the neighborhood of each object (gene or sample) and identification of objects with \"archetypal\" features named Cluster Supporting Objects, around which to construct the clusters; (ii) assignment to each object of a fuzzy membership vector approximated from the memberships of its neighboring objects, by an iterative converging process in which membership spreads from the Cluster Supporting Objects through their neighbors. Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-organizing maps (SOM) showed that data partitions generated by FLAME are not superimposable to those of other methods and, although different types of datasets are better partitioned by different algorithms, FLAME displays the best overall performance. FLAME is implemented, together with all the above-mentioned algorithms, in a C++ software with graphical interface for Linux and Windows, capable of handling very large datasets, named Gene Expression Data Analysis Studio (GEDAS), freely available under GNU General Public License.\nCONCLUSION: The FLAME algorithm has intrinsic advantages, such as the ability to capture non-linear relationships and non-globular clusters, the automated definition of the number of clusters, and the identification of cluster outliers, i.e. genes that are not assigned to any cluster. As a result, clusters are more internally homogeneous and more diverse from each other, and provide better partitioning of biological functions. The clustering algorithm can be easily extended to applications different from gene expression analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3764494", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f30caf8c2d32292ffb57e8f7635021819b0e7968a61163c2897c1288c5aa973"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17204155"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009905742"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-3", 
      "https://app.dimensions.ai/details/publication/pub.1009905742"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-8-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-3'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      67 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-3 schema:about N088def6c781743fea409220bb084b401
2 N0d503943552f4028947d644466fceedb
3 N1234c35d6d844f36908b982e4636f130
4 N1c06b7771cf64bf4bb9d37e872749ed7
5 N30aef810edf344009418b0a941c7b2b0
6 N3e767948ccac4362b962ecef3cfef1d5
7 N4846d169606e44a2ade386a1aeff6b3e
8 N4b17f81b26e3450fb993362c1fdf395c
9 N65ede17491694fe7bd44d02777bed503
10 N6a1fb976fc6246ca96e28120cd276113
11 N726a6b51a2bc4f0c9ecc8397257dec32
12 N7c93f431e91e46338da1d07dde3ce8f8
13 Nc5d7f124bdd6490ea050ba075c017d39
14 Ndbedbf6325f64f4893ef5278222c8e03
15 Nf1b6ab9306954cb09e7f01d626b8d96c
16 anzsrc-for:08
17 anzsrc-for:0801
18 schema:author N0660cfbbd9e1487496106c9f7b17df3b
19 schema:citation sg:pub.10.1038/10343
20 sg:pub.10.1186/1471-2105-6-289
21 sg:pub.10.1186/1471-2105-6-s2-s10
22 sg:pub.10.1186/gb-2002-3-11-research0059
23 sg:pub.10.1186/jbiol16
24 https://doi.org/10.1006/geno.2000.6187
25 https://doi.org/10.1006/jmbi.2000.3519
26 https://doi.org/10.1016/j.tig.2006.01.006
27 https://doi.org/10.1016/s0031-3203(00)00167-9
28 https://doi.org/10.1073/pnas.95.25.14863
29 https://doi.org/10.1073/pnas.96.6.2907
30 https://doi.org/10.1091/mbc.9.12.3273
31 https://doi.org/10.1093/bioinformatics/17.10.977
32 https://doi.org/10.1093/bioinformatics/17.4.309
33 https://doi.org/10.1093/bioinformatics/17.suppl_1.s306
34 https://doi.org/10.1093/bioinformatics/btg1078
35 https://doi.org/10.1093/bioinformatics/btg119
36 https://doi.org/10.1093/bioinformatics/bth142
37 https://doi.org/10.1093/bioinformatics/bth177
38 https://doi.org/10.1093/bioinformatics/bti517
39 https://doi.org/10.1126/science.290.5500.2323
40 https://doi.org/10.1145/331499.331504
41 https://doi.org/10.1371/journal.pmed.0030047
42 schema:datePublished 2007-12
43 schema:datePublishedReg 2007-12-01
44 schema:description BACKGROUND: Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process. RESULTS: The clustering algorithm is named Fuzzy clustering by Local Approximation of MEmbership (FLAME). Distinctive elements of FLAME are: (i) definition of the neighborhood of each object (gene or sample) and identification of objects with "archetypal" features named Cluster Supporting Objects, around which to construct the clusters; (ii) assignment to each object of a fuzzy membership vector approximated from the memberships of its neighboring objects, by an iterative converging process in which membership spreads from the Cluster Supporting Objects through their neighbors. Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-organizing maps (SOM) showed that data partitions generated by FLAME are not superimposable to those of other methods and, although different types of datasets are better partitioned by different algorithms, FLAME displays the best overall performance. FLAME is implemented, together with all the above-mentioned algorithms, in a C++ software with graphical interface for Linux and Windows, capable of handling very large datasets, named Gene Expression Data Analysis Studio (GEDAS), freely available under GNU General Public License. CONCLUSION: The FLAME algorithm has intrinsic advantages, such as the ability to capture non-linear relationships and non-globular clusters, the automated definition of the number of clusters, and the identification of cluster outliers, i.e. genes that are not assigned to any cluster. As a result, clusters are more internally homogeneous and more diverse from each other, and provide better partitioning of biological functions. The clustering algorithm can be easily extended to applications different from gene expression analysis.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N0379d43e02ff45caa170d6fdafcf1d6b
49 Ndea11ff3acda4ff6a596dc0fdf050a04
50 sg:journal.1023786
51 schema:name FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
52 schema:pagination 3
53 schema:productId N0f7d855d1ab342e9bfa97b19ae204f86
54 N6e3f27deff7a40049af4beaf49da87e9
55 Nc903a2b8f3524663912c1a4e65e82901
56 Ne9b0b05e9b1247e59e5eccca98c71472
57 Nf2c0f119ad2243e4a4f4b4472ff37f6c
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009905742
59 https://doi.org/10.1186/1471-2105-8-3
60 schema:sdDatePublished 2019-04-10T14:07
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N3a13b972ce7749858cb3c0be890fb6ba
63 schema:url http://link.springer.com/10.1186%2F1471-2105-8-3
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0379d43e02ff45caa170d6fdafcf1d6b schema:volumeNumber 8
68 rdf:type schema:PublicationVolume
69 N0660cfbbd9e1487496106c9f7b17df3b rdf:first sg:person.01005633705.76
70 rdf:rest N601491b9689a4f83a1e4e2d63dbf472f
71 N088def6c781743fea409220bb084b401 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Animals
73 rdf:type schema:DefinedTerm
74 N0d503943552f4028947d644466fceedb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Databases, Genetic
76 rdf:type schema:DefinedTerm
77 N0f7d855d1ab342e9bfa97b19ae204f86 schema:name doi
78 schema:value 10.1186/1471-2105-8-3
79 rdf:type schema:PropertyValue
80 N1234c35d6d844f36908b982e4636f130 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Oligonucleotide Array Sequence Analysis
82 rdf:type schema:DefinedTerm
83 N1c06b7771cf64bf4bb9d37e872749ed7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Algorithms
85 rdf:type schema:DefinedTerm
86 N30aef810edf344009418b0a941c7b2b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Software
88 rdf:type schema:DefinedTerm
89 N3a13b972ce7749858cb3c0be890fb6ba schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N3e767948ccac4362b962ecef3cfef1d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Genomics
93 rdf:type schema:DefinedTerm
94 N4846d169606e44a2ade386a1aeff6b3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Models, Statistical
96 rdf:type schema:DefinedTerm
97 N4b17f81b26e3450fb993362c1fdf395c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Computational Biology
99 rdf:type schema:DefinedTerm
100 N601491b9689a4f83a1e4e2d63dbf472f rdf:first sg:person.01103126067.66
101 rdf:rest rdf:nil
102 N65ede17491694fe7bd44d02777bed503 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 N6a1fb976fc6246ca96e28120cd276113 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Hypoxia
107 rdf:type schema:DefinedTerm
108 N6e3f27deff7a40049af4beaf49da87e9 schema:name readcube_id
109 schema:value 2f30caf8c2d32292ffb57e8f7635021819b0e7968a61163c2897c1288c5aa973
110 rdf:type schema:PropertyValue
111 N726a6b51a2bc4f0c9ecc8397257dec32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Pattern Recognition, Automated
113 rdf:type schema:DefinedTerm
114 N7c93f431e91e46338da1d07dde3ce8f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Models, Genetic
116 rdf:type schema:DefinedTerm
117 Nc5d7f124bdd6490ea050ba075c017d39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Cluster Analysis
119 rdf:type schema:DefinedTerm
120 Nc903a2b8f3524663912c1a4e65e82901 schema:name dimensions_id
121 schema:value pub.1009905742
122 rdf:type schema:PropertyValue
123 Ndbedbf6325f64f4893ef5278222c8e03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Programming Languages
125 rdf:type schema:DefinedTerm
126 Ndea11ff3acda4ff6a596dc0fdf050a04 schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 Ne9b0b05e9b1247e59e5eccca98c71472 schema:name nlm_unique_id
129 schema:value 100965194
130 rdf:type schema:PropertyValue
131 Nf1b6ab9306954cb09e7f01d626b8d96c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Mice
133 rdf:type schema:DefinedTerm
134 Nf2c0f119ad2243e4a4f4b4472ff37f6c schema:name pubmed_id
135 schema:value 17204155
136 rdf:type schema:PropertyValue
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:grant.3764494 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-3
144 rdf:type schema:MonetaryGrant
145 sg:journal.1023786 schema:issn 1471-2105
146 schema:name BMC Bioinformatics
147 rdf:type schema:Periodical
148 sg:person.01005633705.76 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
149 schema:familyName Fu
150 schema:givenName Limin
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005633705.76
152 rdf:type schema:Person
153 sg:person.01103126067.66 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
154 schema:familyName Medico
155 schema:givenName Enzo
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103126067.66
157 rdf:type schema:Person
158 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
159 https://doi.org/10.1038/10343
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2105-6-289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024927529
162 https://doi.org/10.1186/1471-2105-6-289
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/1471-2105-6-s2-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010007669
165 https://doi.org/10.1186/1471-2105-6-s2-s10
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/gb-2002-3-11-research0059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022771756
168 https://doi.org/10.1186/gb-2002-3-11-research0059
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/jbiol16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052662045
171 https://doi.org/10.1186/jbiol16
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/geno.2000.6187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041734337
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1006/jmbi.2000.3519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037537394
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.tig.2006.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005391166
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0031-3203(00)00167-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047596917
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.96.6.2907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042350330
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1091/mbc.9.12.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767256
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/17.10.977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029038829
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/17.4.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008331774
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/17.suppl_1.s306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411105
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btg1078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018382979
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/btg119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040797632
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/bth142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013523365
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/bth177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053473483
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/bti517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032202599
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.290.5500.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051806676
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1145/331499.331504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026347712
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1371/journal.pmed.0030047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039127082
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.7605.4 schema:alternateName University of Turin
210 schema:name Laboratory of Functional Genomics, The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino, School of Medicine, 10060, Candiolo, Italy
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...