Predicting active site residue annotations in the Pfam database View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Jaina Mistry, Alex Bateman, Robert D Finn

ABSTRACT

BACKGROUND: Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family. DESCRIPTION: We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives. CONCLUSION: We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation. More... »

PAGES

298

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-298

DOI

http://dx.doi.org/10.1186/1471-2105-8-298

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023032701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17688688


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software Design", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mistry", 
        "givenName": "Jaina", 
        "id": "sg:person.0602243230.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602243230.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bateman", 
        "givenName": "Alex", 
        "id": "sg:person.01253551753.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253551753.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finn", 
        "givenName": "Robert D", 
        "id": "sg:person.0577031231.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577031231.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.06.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002722192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00515-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002824751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00515-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002824751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)01336-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002848777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)01336-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002848777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003297455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005213614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0888-7543(03)00022-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005986405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0888-7543(03)00022-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005986405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00628-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006557731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00628-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006557731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00207-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007157471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00207-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007157471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007732737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007732737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.11.5865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008099366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011072594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012447106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013489808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013612578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013664451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.9.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024610917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026110008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034562814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034562814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035678200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039549800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040556516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041042370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.03465504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041052556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043040174", 
          "https://doi.org/10.1186/1471-2105-6-284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043666429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(199707)28:3<405::aid-prot10>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046295485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00599-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046957104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047108131", 
          "https://doi.org/10.1186/1471-2105-6-116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047108131", 
          "https://doi.org/10.1186/1471-2105-6-116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047264834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051769701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053004630", 
          "https://doi.org/10.1186/1471-2105-7-312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/2.2.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059980389"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family.\nDESCRIPTION: We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives.\nCONCLUSION: We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-298", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2755989", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3638942", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Predicting active site residue annotations in the Pfam database", 
    "pagination": "298", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6dbb7cd9adf5b220b9f6d8ae754e20ab1ac89174ddbdff9aafb693492dfff4c9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17688688"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-298"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023032701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-298", 
      "https://app.dimensions.ai/details/publication/pub.1023032701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-8-298"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-298'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-298'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-298'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-298'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      69 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-298 schema:about N0211feb1f242424284022ae64c1588bf
2 N1aed0a4a0bb44ae088b42725e825138d
3 N1d4242f51a674badb404f2d5048bf3c3
4 N343e3386efab45cb97692a48f239f939
5 N403371eab6f144d38a7c50ada82168fe
6 N5bf277702a974113bc0eea9c0dbf5307
7 N9f6af5d6cd18455eba9a0c909c76c581
8 Nc9dbf3e7a692472f8a0ad00920673112
9 anzsrc-for:08
10 anzsrc-for:0806
11 schema:author Nfdac00478c414ad48443d329b2271da4
12 schema:citation sg:pub.10.1186/1471-2105-6-116
13 sg:pub.10.1186/1471-2105-6-284
14 sg:pub.10.1186/1471-2105-7-312
15 https://doi.org/10.1002/(sici)1097-0134(199707)28:3<405::aid-prot10>3.0.co;2-l
16 https://doi.org/10.1002/prot.10622
17 https://doi.org/10.1002/prot.21101
18 https://doi.org/10.1006/jmbi.1996.0167
19 https://doi.org/10.1006/jmbi.2001.4870
20 https://doi.org/10.1006/jmbi.2001.5009
21 https://doi.org/10.1016/j.jmb.2005.04.018
22 https://doi.org/10.1016/j.jmb.2005.06.047
23 https://doi.org/10.1016/s0022-2836(02)00599-5
24 https://doi.org/10.1016/s0022-2836(02)01336-0
25 https://doi.org/10.1016/s0022-2836(03)00207-9
26 https://doi.org/10.1016/s0022-2836(03)00515-1
27 https://doi.org/10.1016/s0022-2836(03)00628-4
28 https://doi.org/10.1016/s0888-7543(03)00022-3
29 https://doi.org/10.1073/pnas.95.11.5865
30 https://doi.org/10.1093/bioinformatics/14.9.755
31 https://doi.org/10.1093/bioinformatics/btl650
32 https://doi.org/10.1093/nar/gkg545
33 https://doi.org/10.1093/nar/gkh028
34 https://doi.org/10.1093/nar/gkh956
35 https://doi.org/10.1093/nar/gki058
36 https://doi.org/10.1093/nar/gkj063
37 https://doi.org/10.1093/nar/gkj079
38 https://doi.org/10.1093/nar/gkj089
39 https://doi.org/10.1093/nar/gkj149
40 https://doi.org/10.1093/nar/gkj161
41 https://doi.org/10.1093/nar/gkl841
42 https://doi.org/10.1093/protein/2.2.127
43 https://doi.org/10.1110/ps.03465504
44 schema:datePublished 2007-12
45 schema:datePublishedReg 2007-12-01
46 schema:description BACKGROUND: Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family. DESCRIPTION: We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives. CONCLUSION: We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N51c231ae8de746f1a664395b82779141
51 N56c83a1f733741719fa6d875fe0c401c
52 sg:journal.1023786
53 schema:name Predicting active site residue annotations in the Pfam database
54 schema:pagination 298
55 schema:productId N2c59f25432bc4ac580855902f24d69bc
56 N510cf8ba210446cb84dc05044f33c05b
57 Ndc0b7a0bfa08458f9fabb9495777935a
58 Nddf5bef987cc44ceaf444cdb94e61e5e
59 Nf2a8e24d588e42a29bfa6f5b37d732b2
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023032701
61 https://doi.org/10.1186/1471-2105-8-298
62 schema:sdDatePublished 2019-04-10T16:40
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nba35559aa32c41a0bac8ad9c99107772
65 schema:url http://link.springer.com/10.1186%2F1471-2105-8-298
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0211feb1f242424284022ae64c1588bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Molecular Sequence Data
71 rdf:type schema:DefinedTerm
72 N1aed0a4a0bb44ae088b42725e825138d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Databases, Protein
74 rdf:type schema:DefinedTerm
75 N1d4242f51a674badb404f2d5048bf3c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Amino Acid Sequence
77 rdf:type schema:DefinedTerm
78 N20e38dc933b143a6a1aac37072717806 rdf:first sg:person.01253551753.58
79 rdf:rest Nf107e3946a4c4a35a31107ce4c493515
80 N2c59f25432bc4ac580855902f24d69bc schema:name dimensions_id
81 schema:value pub.1023032701
82 rdf:type schema:PropertyValue
83 N343e3386efab45cb97692a48f239f939 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Software Design
85 rdf:type schema:DefinedTerm
86 N403371eab6f144d38a7c50ada82168fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Sequence Alignment
88 rdf:type schema:DefinedTerm
89 N510cf8ba210446cb84dc05044f33c05b schema:name nlm_unique_id
90 schema:value 100965194
91 rdf:type schema:PropertyValue
92 N51c231ae8de746f1a664395b82779141 schema:volumeNumber 8
93 rdf:type schema:PublicationVolume
94 N56c83a1f733741719fa6d875fe0c401c schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N5bf277702a974113bc0eea9c0dbf5307 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Binding Sites
98 rdf:type schema:DefinedTerm
99 N9f6af5d6cd18455eba9a0c909c76c581 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Predictive Value of Tests
101 rdf:type schema:DefinedTerm
102 Nba35559aa32c41a0bac8ad9c99107772 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nc9dbf3e7a692472f8a0ad00920673112 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Sequence Homology, Amino Acid
106 rdf:type schema:DefinedTerm
107 Ndc0b7a0bfa08458f9fabb9495777935a schema:name pubmed_id
108 schema:value 17688688
109 rdf:type schema:PropertyValue
110 Nddf5bef987cc44ceaf444cdb94e61e5e schema:name doi
111 schema:value 10.1186/1471-2105-8-298
112 rdf:type schema:PropertyValue
113 Nf107e3946a4c4a35a31107ce4c493515 rdf:first sg:person.0577031231.30
114 rdf:rest rdf:nil
115 Nf2a8e24d588e42a29bfa6f5b37d732b2 schema:name readcube_id
116 schema:value 6dbb7cd9adf5b220b9f6d8ae754e20ab1ac89174ddbdff9aafb693492dfff4c9
117 rdf:type schema:PropertyValue
118 Nfdac00478c414ad48443d329b2271da4 rdf:first sg:person.0602243230.31
119 rdf:rest N20e38dc933b143a6a1aac37072717806
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
124 schema:name Information Systems
125 rdf:type schema:DefinedTerm
126 sg:grant.2755989 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-298
127 rdf:type schema:MonetaryGrant
128 sg:grant.3638942 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-298
129 rdf:type schema:MonetaryGrant
130 sg:journal.1023786 schema:issn 1471-2105
131 schema:name BMC Bioinformatics
132 rdf:type schema:Periodical
133 sg:person.01253551753.58 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
134 schema:familyName Bateman
135 schema:givenName Alex
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253551753.58
137 rdf:type schema:Person
138 sg:person.0577031231.30 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
139 schema:familyName Finn
140 schema:givenName Robert D
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577031231.30
142 rdf:type schema:Person
143 sg:person.0602243230.31 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
144 schema:familyName Mistry
145 schema:givenName Jaina
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602243230.31
147 rdf:type schema:Person
148 sg:pub.10.1186/1471-2105-6-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047108131
149 https://doi.org/10.1186/1471-2105-6-116
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/1471-2105-6-284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043040174
152 https://doi.org/10.1186/1471-2105-6-284
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-7-312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053004630
155 https://doi.org/10.1186/1471-2105-7-312
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/(sici)1097-0134(199707)28:3<405::aid-prot10>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1046295485
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/prot.10622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013489808
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/prot.21101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003297455
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1006/jmbi.1996.0167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047264834
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1006/jmbi.2001.4870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012447106
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1006/jmbi.2001.5009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039549800
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jmb.2005.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011072594
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jmb.2005.06.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002722192
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0022-2836(02)00599-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046957104
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0022-2836(02)01336-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002848777
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0022-2836(03)00207-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007157471
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0022-2836(03)00515-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002824751
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0022-2836(03)00628-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006557731
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0888-7543(03)00022-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005986405
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.95.11.5865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008099366
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/14.9.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610917
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/btl650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007732737
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/nar/gkg545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035678200
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/nar/gkh028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043666429
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/nar/gkh956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041042370
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/nar/gki058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026110008
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/nar/gkj063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005213614
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/nar/gkj079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051769701
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/nar/gkj089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013664451
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/nar/gkj149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612578
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/nar/gkj161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040556516
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/gkl841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034562814
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/protein/2.2.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059980389
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1110/ps.03465504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041052556
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
216 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...