Predicting active site residue annotations in the Pfam database View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Jaina Mistry, Alex Bateman, Robert D Finn

ABSTRACT

BACKGROUND: Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family. DESCRIPTION: We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives. CONCLUSION: We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation. More... »

PAGES

298

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-298

DOI

http://dx.doi.org/10.1186/1471-2105-8-298

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023032701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17688688


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software Design", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mistry", 
        "givenName": "Jaina", 
        "id": "sg:person.0602243230.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602243230.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bateman", 
        "givenName": "Alex", 
        "id": "sg:person.01253551753.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253551753.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finn", 
        "givenName": "Robert D", 
        "id": "sg:person.0577031231.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577031231.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.06.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002722192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00515-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002824751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00515-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002824751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)01336-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002848777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)01336-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002848777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003297455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005213614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0888-7543(03)00022-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005986405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0888-7543(03)00022-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005986405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00628-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006557731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00628-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006557731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00207-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007157471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00207-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007157471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007732737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007732737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.11.5865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008099366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011072594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012447106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013489808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013612578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013664451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.9.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024610917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026110008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034562814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034562814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035678200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039549800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040556516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041042370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.03465504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041052556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043040174", 
          "https://doi.org/10.1186/1471-2105-6-284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043666429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(199707)28:3<405::aid-prot10>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046295485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00599-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046957104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047108131", 
          "https://doi.org/10.1186/1471-2105-6-116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047108131", 
          "https://doi.org/10.1186/1471-2105-6-116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047264834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051769701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053004630", 
          "https://doi.org/10.1186/1471-2105-7-312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/2.2.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059980389"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family.\nDESCRIPTION: We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives.\nCONCLUSION: We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-298", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2755989", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3638942", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Predicting active site residue annotations in the Pfam database", 
    "pagination": "298", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6dbb7cd9adf5b220b9f6d8ae754e20ab1ac89174ddbdff9aafb693492dfff4c9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17688688"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-298"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023032701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-298", 
      "https://app.dimensions.ai/details/publication/pub.1023032701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-8-298"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-298'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-298'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-298'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-298'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      69 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-298 schema:about N116cac9a057a4552a9a7efa7bcb36e9a
2 N158ef635f5fe41fdb139ef35d918fc3c
3 N282962e9f3794e0e8c8e953ad67b84a7
4 N760d576d4cfa44dfa6c2f19e988ec512
5 N7fe19e53e0614fe49c748920621f9db7
6 N94d6d053198f4a009a76243ce2f2266a
7 Nadc850a906c44e9db1ee396bb8e0fbef
8 Nfd924fff7e8d428bb353a7992ceba85b
9 anzsrc-for:08
10 anzsrc-for:0806
11 schema:author N36bec61c372c4004b2abe7056a35823b
12 schema:citation sg:pub.10.1186/1471-2105-6-116
13 sg:pub.10.1186/1471-2105-6-284
14 sg:pub.10.1186/1471-2105-7-312
15 https://doi.org/10.1002/(sici)1097-0134(199707)28:3<405::aid-prot10>3.0.co;2-l
16 https://doi.org/10.1002/prot.10622
17 https://doi.org/10.1002/prot.21101
18 https://doi.org/10.1006/jmbi.1996.0167
19 https://doi.org/10.1006/jmbi.2001.4870
20 https://doi.org/10.1006/jmbi.2001.5009
21 https://doi.org/10.1016/j.jmb.2005.04.018
22 https://doi.org/10.1016/j.jmb.2005.06.047
23 https://doi.org/10.1016/s0022-2836(02)00599-5
24 https://doi.org/10.1016/s0022-2836(02)01336-0
25 https://doi.org/10.1016/s0022-2836(03)00207-9
26 https://doi.org/10.1016/s0022-2836(03)00515-1
27 https://doi.org/10.1016/s0022-2836(03)00628-4
28 https://doi.org/10.1016/s0888-7543(03)00022-3
29 https://doi.org/10.1073/pnas.95.11.5865
30 https://doi.org/10.1093/bioinformatics/14.9.755
31 https://doi.org/10.1093/bioinformatics/btl650
32 https://doi.org/10.1093/nar/gkg545
33 https://doi.org/10.1093/nar/gkh028
34 https://doi.org/10.1093/nar/gkh956
35 https://doi.org/10.1093/nar/gki058
36 https://doi.org/10.1093/nar/gkj063
37 https://doi.org/10.1093/nar/gkj079
38 https://doi.org/10.1093/nar/gkj089
39 https://doi.org/10.1093/nar/gkj149
40 https://doi.org/10.1093/nar/gkj161
41 https://doi.org/10.1093/nar/gkl841
42 https://doi.org/10.1093/protein/2.2.127
43 https://doi.org/10.1110/ps.03465504
44 schema:datePublished 2007-12
45 schema:datePublishedReg 2007-12-01
46 schema:description BACKGROUND: Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family. DESCRIPTION: We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives. CONCLUSION: We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N89b14e17d2df4244b92ffbe3a244e5a7
51 Nb5ada65d62c04306bd9f68a40b65e3f3
52 sg:journal.1023786
53 schema:name Predicting active site residue annotations in the Pfam database
54 schema:pagination 298
55 schema:productId N03124ed80d974fb68c5efa994f87b2e1
56 N0887fc68ea464f9087d65ad2a5829034
57 N28d400dd7555480db59960d1e60a9a6d
58 N8bb6709c4bd4441b95ae09a52822c671
59 N9dbf213b76f64e4c8532944e3f2ab89f
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023032701
61 https://doi.org/10.1186/1471-2105-8-298
62 schema:sdDatePublished 2019-04-10T16:40
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nb0d5a1ca0faf4d01b5a81e84648eddda
65 schema:url http://link.springer.com/10.1186%2F1471-2105-8-298
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N03124ed80d974fb68c5efa994f87b2e1 schema:name pubmed_id
70 schema:value 17688688
71 rdf:type schema:PropertyValue
72 N0358118d1aa74999b10d854917fef6a7 rdf:first sg:person.01253551753.58
73 rdf:rest N6f2262c8996b4c9db9116d890ab1ea98
74 N0887fc68ea464f9087d65ad2a5829034 schema:name doi
75 schema:value 10.1186/1471-2105-8-298
76 rdf:type schema:PropertyValue
77 N116cac9a057a4552a9a7efa7bcb36e9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Sequence Homology, Amino Acid
79 rdf:type schema:DefinedTerm
80 N158ef635f5fe41fdb139ef35d918fc3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Molecular Sequence Data
82 rdf:type schema:DefinedTerm
83 N282962e9f3794e0e8c8e953ad67b84a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Predictive Value of Tests
85 rdf:type schema:DefinedTerm
86 N28d400dd7555480db59960d1e60a9a6d schema:name nlm_unique_id
87 schema:value 100965194
88 rdf:type schema:PropertyValue
89 N36bec61c372c4004b2abe7056a35823b rdf:first sg:person.0602243230.31
90 rdf:rest N0358118d1aa74999b10d854917fef6a7
91 N6f2262c8996b4c9db9116d890ab1ea98 rdf:first sg:person.0577031231.30
92 rdf:rest rdf:nil
93 N760d576d4cfa44dfa6c2f19e988ec512 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Software Design
95 rdf:type schema:DefinedTerm
96 N7fe19e53e0614fe49c748920621f9db7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Databases, Protein
98 rdf:type schema:DefinedTerm
99 N89b14e17d2df4244b92ffbe3a244e5a7 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N8bb6709c4bd4441b95ae09a52822c671 schema:name readcube_id
102 schema:value 6dbb7cd9adf5b220b9f6d8ae754e20ab1ac89174ddbdff9aafb693492dfff4c9
103 rdf:type schema:PropertyValue
104 N94d6d053198f4a009a76243ce2f2266a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Amino Acid Sequence
106 rdf:type schema:DefinedTerm
107 N9dbf213b76f64e4c8532944e3f2ab89f schema:name dimensions_id
108 schema:value pub.1023032701
109 rdf:type schema:PropertyValue
110 Nadc850a906c44e9db1ee396bb8e0fbef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Sequence Alignment
112 rdf:type schema:DefinedTerm
113 Nb0d5a1ca0faf4d01b5a81e84648eddda schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nb5ada65d62c04306bd9f68a40b65e3f3 schema:volumeNumber 8
116 rdf:type schema:PublicationVolume
117 Nfd924fff7e8d428bb353a7992ceba85b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Binding Sites
119 rdf:type schema:DefinedTerm
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
124 schema:name Information Systems
125 rdf:type schema:DefinedTerm
126 sg:grant.2755989 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-298
127 rdf:type schema:MonetaryGrant
128 sg:grant.3638942 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-298
129 rdf:type schema:MonetaryGrant
130 sg:journal.1023786 schema:issn 1471-2105
131 schema:name BMC Bioinformatics
132 rdf:type schema:Periodical
133 sg:person.01253551753.58 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
134 schema:familyName Bateman
135 schema:givenName Alex
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253551753.58
137 rdf:type schema:Person
138 sg:person.0577031231.30 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
139 schema:familyName Finn
140 schema:givenName Robert D
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577031231.30
142 rdf:type schema:Person
143 sg:person.0602243230.31 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
144 schema:familyName Mistry
145 schema:givenName Jaina
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602243230.31
147 rdf:type schema:Person
148 sg:pub.10.1186/1471-2105-6-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047108131
149 https://doi.org/10.1186/1471-2105-6-116
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/1471-2105-6-284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043040174
152 https://doi.org/10.1186/1471-2105-6-284
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-7-312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053004630
155 https://doi.org/10.1186/1471-2105-7-312
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/(sici)1097-0134(199707)28:3<405::aid-prot10>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1046295485
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/prot.10622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013489808
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/prot.21101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003297455
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1006/jmbi.1996.0167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047264834
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1006/jmbi.2001.4870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012447106
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1006/jmbi.2001.5009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039549800
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jmb.2005.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011072594
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jmb.2005.06.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002722192
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0022-2836(02)00599-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046957104
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0022-2836(02)01336-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002848777
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0022-2836(03)00207-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007157471
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0022-2836(03)00515-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002824751
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0022-2836(03)00628-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006557731
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0888-7543(03)00022-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005986405
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.95.11.5865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008099366
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/14.9.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610917
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/btl650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007732737
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/nar/gkg545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035678200
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/nar/gkh028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043666429
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/nar/gkh956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041042370
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/nar/gki058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026110008
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/nar/gkj063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005213614
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/nar/gkj079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051769701
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/nar/gkj089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013664451
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/nar/gkj149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612578
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/nar/gkj161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040556516
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/gkl841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034562814
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/protein/2.2.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059980389
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1110/ps.03465504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041052556
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
216 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, UK
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...