Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Helen M Parsons, Christian Ludwig, Ulrich L Günther, Mark R Viant

ABSTRACT

BACKGROUND: Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES). RESULTS: Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. CONCLUSION: We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. More... »

PAGES

234

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-234

DOI

http://dx.doi.org/10.1186/1471-2105-8-234

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030581872

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17605789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Centre for Systems Biology, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parsons", 
        "givenName": "Helen M", 
        "id": "sg:person.0761727616.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761727616.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "The Henry Wellcome Building for Biomolecular NMR Spectroscopy, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ludwig", 
        "givenName": "Christian", 
        "id": "sg:person.01112544071.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112544071.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "The Henry Wellcome Building for Biomolecular NMR Spectroscopy, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcnther", 
        "givenName": "Ulrich L", 
        "id": "sg:person.0733543446.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733543446.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Centre for Systems Biology, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK", 
            "School of Biosciences, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viant", 
        "givenName": "Mark R", 
        "id": "sg:person.01140655554.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001131541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-4429-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002168056", 
          "https://doi.org/10.1007/s11306-005-4429-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-4429-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002168056", 
          "https://doi.org/10.1007/s11306-005-4429-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0519312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004070508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0519312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004070508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004880490", 
          "https://doi.org/10.1186/1471-2164-7-142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10886-006-9152-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006993420", 
          "https://doi.org/10.1007/s10886-006-9152-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.2000.2121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009673795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-007-0092-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012239022", 
          "https://doi.org/10.1007/s11306-007-0092-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.phytochem.2006.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012295411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019137780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6565(00)00036-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021522769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022502205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022502205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028743071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031487565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(03)00060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037464786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2004.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037967197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m410200200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042869470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-006-0043-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043049251", 
          "https://doi.org/10.1007/s11306-006-0043-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0308-8146(95)00220-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043459758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2003.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048429526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2003.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048429526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(03)00094-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052521103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0156870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054993313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0156870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054993313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es062745w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055500123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es062745w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055500123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/1536231041388348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059215071"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES).\nRESULTS: Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra.\nCONCLUSION: We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-234", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation", 
    "pagination": "234", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91b0553323ab94b673a789e31a98839b217fdcb24f33291258d84ed84a925fad"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17605789"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-234"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030581872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-234", 
      "https://app.dimensions.ai/details/publication/pub.1030581872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-8-234"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-234'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-234'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-234'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-234'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      60 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-234 schema:about N0b894ef1986e4431bb5a086170a23610
2 N10aa137eb165420e958db5f57b820ff4
3 N31d6e1f414f349acad48ea5a677d2c62
4 N4638ff1b0a9f4d6194ff056e8a238228
5 N6ff0a59ef9e940c987b07deedb66225f
6 Na40651cc5b9e405c9505f9d7049f63da
7 Nba1f8d6e312445e4a94cf81fed2c944e
8 anzsrc-for:03
9 anzsrc-for:0301
10 schema:author Na6db43d8ba584e4ea81a6963e92ce2d5
11 schema:citation sg:pub.10.1007/s10886-006-9152-6
12 sg:pub.10.1007/s11306-005-4429-2
13 sg:pub.10.1007/s11306-006-0043-1
14 sg:pub.10.1007/s11306-007-0092-0
15 sg:pub.10.1038/ng1031
16 sg:pub.10.1186/1471-2164-7-142
17 https://doi.org/10.1006/jmre.2000.2121
18 https://doi.org/10.1016/0308-8146(95)00220-0
19 https://doi.org/10.1016/j.ab.2003.07.026
20 https://doi.org/10.1016/j.bbrc.2003.09.092
21 https://doi.org/10.1016/j.phytochem.2006.08.018
22 https://doi.org/10.1016/j.tibtech.2004.03.007
23 https://doi.org/10.1016/s0003-2670(03)00060-6
24 https://doi.org/10.1016/s0003-2670(03)00094-1
25 https://doi.org/10.1016/s0079-6565(00)00036-4
26 https://doi.org/10.1021/ac0156870
27 https://doi.org/10.1021/ac0519312
28 https://doi.org/10.1021/es062745w
29 https://doi.org/10.1074/jbc.m410200200
30 https://doi.org/10.1089/1536231041388348
31 https://doi.org/10.1093/bioinformatics/18.suppl_1.s105
32 https://doi.org/10.1093/bioinformatics/btg107
33 https://doi.org/10.1093/bioinformatics/btg178
34 https://doi.org/10.1093/bioinformatics/btg245
35 schema:datePublished 2007-12
36 schema:datePublishedReg 2007-12-01
37 schema:description BACKGROUND: Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES). RESULTS: Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. CONCLUSION: We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N22b3c4eb85bd418aae5fed4db380ea58
42 Nd2024d8632b84c689e8c570fa8dff6eb
43 sg:journal.1023786
44 schema:name Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation
45 schema:pagination 234
46 schema:productId N1f488a3e491c4f8492b1d962c2a0bf8f
47 N230885588c3f4886a05fb0acfaf44866
48 N992f05ec1cf640438f7a056a4acda515
49 N9fedc9143ff747cf87f528eee432396a
50 Na132df1e897f4913a71d3db563d56540
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030581872
52 https://doi.org/10.1186/1471-2105-8-234
53 schema:sdDatePublished 2019-04-10T14:59
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N2de942e81a5f48ce85d8ed6224679176
56 schema:url http://link.springer.com/10.1186%2F1471-2105-8-234
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0b894ef1986e4431bb5a086170a23610 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Algorithms
62 rdf:type schema:DefinedTerm
63 N10aa137eb165420e958db5f57b820ff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Magnetic Resonance Spectroscopy
65 rdf:type schema:DefinedTerm
66 N1ce95d3a58d54e71805856bbeebe39f6 rdf:first sg:person.0733543446.54
67 rdf:rest Nb632efb9f9604c429a21d8efef16f514
68 N1f488a3e491c4f8492b1d962c2a0bf8f schema:name pubmed_id
69 schema:value 17605789
70 rdf:type schema:PropertyValue
71 N22b3c4eb85bd418aae5fed4db380ea58 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N230885588c3f4886a05fb0acfaf44866 schema:name doi
74 schema:value 10.1186/1471-2105-8-234
75 rdf:type schema:PropertyValue
76 N2de942e81a5f48ce85d8ed6224679176 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N30c7f873959b4376b66b34db8e465a80 rdf:first sg:person.01112544071.19
79 rdf:rest N1ce95d3a58d54e71805856bbeebe39f6
80 N31d6e1f414f349acad48ea5a677d2c62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Analysis of Variance
82 rdf:type schema:DefinedTerm
83 N4638ff1b0a9f4d6194ff056e8a238228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Data Interpretation, Statistical
85 rdf:type schema:DefinedTerm
86 N6ff0a59ef9e940c987b07deedb66225f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Sensitivity and Specificity
88 rdf:type schema:DefinedTerm
89 N992f05ec1cf640438f7a056a4acda515 schema:name nlm_unique_id
90 schema:value 100965194
91 rdf:type schema:PropertyValue
92 N9fedc9143ff747cf87f528eee432396a schema:name readcube_id
93 schema:value 91b0553323ab94b673a789e31a98839b217fdcb24f33291258d84ed84a925fad
94 rdf:type schema:PropertyValue
95 Na132df1e897f4913a71d3db563d56540 schema:name dimensions_id
96 schema:value pub.1030581872
97 rdf:type schema:PropertyValue
98 Na40651cc5b9e405c9505f9d7049f63da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Proteome
100 rdf:type schema:DefinedTerm
101 Na6db43d8ba584e4ea81a6963e92ce2d5 rdf:first sg:person.0761727616.75
102 rdf:rest N30c7f873959b4376b66b34db8e465a80
103 Nb632efb9f9604c429a21d8efef16f514 rdf:first sg:person.01140655554.38
104 rdf:rest rdf:nil
105 Nba1f8d6e312445e4a94cf81fed2c944e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Gene Expression Profiling
107 rdf:type schema:DefinedTerm
108 Nd2024d8632b84c689e8c570fa8dff6eb schema:volumeNumber 8
109 rdf:type schema:PublicationVolume
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
114 schema:name Analytical Chemistry
115 rdf:type schema:DefinedTerm
116 sg:journal.1023786 schema:issn 1471-2105
117 schema:name BMC Bioinformatics
118 rdf:type schema:Periodical
119 sg:person.01112544071.19 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
120 schema:familyName Ludwig
121 schema:givenName Christian
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112544071.19
123 rdf:type schema:Person
124 sg:person.01140655554.38 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
125 schema:familyName Viant
126 schema:givenName Mark R
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38
128 rdf:type schema:Person
129 sg:person.0733543446.54 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
130 schema:familyName Günther
131 schema:givenName Ulrich L
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733543446.54
133 rdf:type schema:Person
134 sg:person.0761727616.75 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
135 schema:familyName Parsons
136 schema:givenName Helen M
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761727616.75
138 rdf:type schema:Person
139 sg:pub.10.1007/s10886-006-9152-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006993420
140 https://doi.org/10.1007/s10886-006-9152-6
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11306-005-4429-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002168056
143 https://doi.org/10.1007/s11306-005-4429-2
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11306-006-0043-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043049251
146 https://doi.org/10.1007/s11306-006-0043-1
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11306-007-0092-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012239022
149 https://doi.org/10.1007/s11306-007-0092-0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ng1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021837407
152 https://doi.org/10.1038/ng1031
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2164-7-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004880490
155 https://doi.org/10.1186/1471-2164-7-142
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1006/jmre.2000.2121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009673795
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0308-8146(95)00220-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043459758
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ab.2003.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048429526
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.bbrc.2003.09.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022502205
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.phytochem.2006.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012295411
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.tibtech.2004.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037967197
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0003-2670(03)00060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037464786
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0003-2670(03)00094-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052521103
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0079-6565(00)00036-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021522769
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/ac0156870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054993313
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/ac0519312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004070508
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/es062745w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055500123
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1074/jbc.m410200200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042869470
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1089/1536231041388348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059215071
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/18.suppl_1.s105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031487565
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/btg107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019137780
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/btg178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028743071
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/btg245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001131541
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
194 schema:name Centre for Systems Biology, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK
195 School of Biosciences, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK
196 The Henry Wellcome Building for Biomolecular NMR Spectroscopy, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...