Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Helen M Parsons, Christian Ludwig, Ulrich L Günther, Mark R Viant

ABSTRACT

BACKGROUND: Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES). RESULTS: Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. CONCLUSION: We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. More... »

PAGES

234

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-234

DOI

http://dx.doi.org/10.1186/1471-2105-8-234

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030581872

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17605789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Centre for Systems Biology, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parsons", 
        "givenName": "Helen M", 
        "id": "sg:person.0761727616.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761727616.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "The Henry Wellcome Building for Biomolecular NMR Spectroscopy, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ludwig", 
        "givenName": "Christian", 
        "id": "sg:person.01112544071.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112544071.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "The Henry Wellcome Building for Biomolecular NMR Spectroscopy, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcnther", 
        "givenName": "Ulrich L", 
        "id": "sg:person.0733543446.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733543446.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Centre for Systems Biology, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK", 
            "School of Biosciences, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viant", 
        "givenName": "Mark R", 
        "id": "sg:person.01140655554.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001131541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-4429-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002168056", 
          "https://doi.org/10.1007/s11306-005-4429-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-4429-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002168056", 
          "https://doi.org/10.1007/s11306-005-4429-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0519312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004070508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0519312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004070508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004880490", 
          "https://doi.org/10.1186/1471-2164-7-142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10886-006-9152-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006993420", 
          "https://doi.org/10.1007/s10886-006-9152-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.2000.2121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009673795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-007-0092-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012239022", 
          "https://doi.org/10.1007/s11306-007-0092-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.phytochem.2006.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012295411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019137780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6565(00)00036-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021522769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022502205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022502205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028743071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031487565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(03)00060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037464786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2004.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037967197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m410200200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042869470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-006-0043-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043049251", 
          "https://doi.org/10.1007/s11306-006-0043-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0308-8146(95)00220-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043459758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2003.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048429526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2003.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048429526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(03)00094-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052521103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0156870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054993313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0156870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054993313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es062745w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055500123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es062745w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055500123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/1536231041388348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059215071"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES).\nRESULTS: Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra.\nCONCLUSION: We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-234", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation", 
    "pagination": "234", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91b0553323ab94b673a789e31a98839b217fdcb24f33291258d84ed84a925fad"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17605789"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-234"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030581872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-234", 
      "https://app.dimensions.ai/details/publication/pub.1030581872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-8-234"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-234'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-234'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-234'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-234'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      60 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-234 schema:about N25605bc5e2614081a1951ddf64b63237
2 N3dc7e1b5b7d44c598aa1e6cf9f9f186e
3 N40d6ebe7c3eb402998de5e53dbf5647f
4 N50065fb7bdeb43c788776128610f3d0f
5 N878f4548528c4b18bd165572e8ca680f
6 Nd839e1017e9f458995cebffabc7cc885
7 Nd9a3e5316c3f467f8e344b12c5313bd9
8 anzsrc-for:03
9 anzsrc-for:0301
10 schema:author Nb23ed2f68ef244879d4a78fb5441cdea
11 schema:citation sg:pub.10.1007/s10886-006-9152-6
12 sg:pub.10.1007/s11306-005-4429-2
13 sg:pub.10.1007/s11306-006-0043-1
14 sg:pub.10.1007/s11306-007-0092-0
15 sg:pub.10.1038/ng1031
16 sg:pub.10.1186/1471-2164-7-142
17 https://doi.org/10.1006/jmre.2000.2121
18 https://doi.org/10.1016/0308-8146(95)00220-0
19 https://doi.org/10.1016/j.ab.2003.07.026
20 https://doi.org/10.1016/j.bbrc.2003.09.092
21 https://doi.org/10.1016/j.phytochem.2006.08.018
22 https://doi.org/10.1016/j.tibtech.2004.03.007
23 https://doi.org/10.1016/s0003-2670(03)00060-6
24 https://doi.org/10.1016/s0003-2670(03)00094-1
25 https://doi.org/10.1016/s0079-6565(00)00036-4
26 https://doi.org/10.1021/ac0156870
27 https://doi.org/10.1021/ac0519312
28 https://doi.org/10.1021/es062745w
29 https://doi.org/10.1074/jbc.m410200200
30 https://doi.org/10.1089/1536231041388348
31 https://doi.org/10.1093/bioinformatics/18.suppl_1.s105
32 https://doi.org/10.1093/bioinformatics/btg107
33 https://doi.org/10.1093/bioinformatics/btg178
34 https://doi.org/10.1093/bioinformatics/btg245
35 schema:datePublished 2007-12
36 schema:datePublishedReg 2007-12-01
37 schema:description BACKGROUND: Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES). RESULTS: Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. CONCLUSION: We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N63a8a9b4fa89441a8f049f6d5ff7075a
42 N731e31d1ceb845aaba39006276d8d2f7
43 sg:journal.1023786
44 schema:name Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation
45 schema:pagination 234
46 schema:productId N2270d6be2f494d0d9c609d132721f715
47 N3b2311098ad248f59e83e15519eb2005
48 N40c97a919f494631a5571d48f4358983
49 N6fcdbb3bb8ab4ab0a9a4205186784a19
50 Ndd02180344ad4467a51a83eb7dc95b2f
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030581872
52 https://doi.org/10.1186/1471-2105-8-234
53 schema:sdDatePublished 2019-04-10T14:59
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N499659aeeaff48b5aefdaec1a40cf3e1
56 schema:url http://link.springer.com/10.1186%2F1471-2105-8-234
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N2270d6be2f494d0d9c609d132721f715 schema:name dimensions_id
61 schema:value pub.1030581872
62 rdf:type schema:PropertyValue
63 N25605bc5e2614081a1951ddf64b63237 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Algorithms
65 rdf:type schema:DefinedTerm
66 N3b2311098ad248f59e83e15519eb2005 schema:name pubmed_id
67 schema:value 17605789
68 rdf:type schema:PropertyValue
69 N3dc7e1b5b7d44c598aa1e6cf9f9f186e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Magnetic Resonance Spectroscopy
71 rdf:type schema:DefinedTerm
72 N40c97a919f494631a5571d48f4358983 schema:name readcube_id
73 schema:value 91b0553323ab94b673a789e31a98839b217fdcb24f33291258d84ed84a925fad
74 rdf:type schema:PropertyValue
75 N40d6ebe7c3eb402998de5e53dbf5647f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Proteome
77 rdf:type schema:DefinedTerm
78 N499659aeeaff48b5aefdaec1a40cf3e1 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N50065fb7bdeb43c788776128610f3d0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Sensitivity and Specificity
82 rdf:type schema:DefinedTerm
83 N63a8a9b4fa89441a8f049f6d5ff7075a schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N6fcdbb3bb8ab4ab0a9a4205186784a19 schema:name nlm_unique_id
86 schema:value 100965194
87 rdf:type schema:PropertyValue
88 N731e31d1ceb845aaba39006276d8d2f7 schema:volumeNumber 8
89 rdf:type schema:PublicationVolume
90 N878f4548528c4b18bd165572e8ca680f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Data Interpretation, Statistical
92 rdf:type schema:DefinedTerm
93 Nac44ec47b78c4545ba6ed7e8f9076710 rdf:first sg:person.01140655554.38
94 rdf:rest rdf:nil
95 Nb23ed2f68ef244879d4a78fb5441cdea rdf:first sg:person.0761727616.75
96 rdf:rest Nc0b9a22b9add4d9692ac59513e86e3cf
97 Nc0b9a22b9add4d9692ac59513e86e3cf rdf:first sg:person.01112544071.19
98 rdf:rest Nedc3c04011e84530ab6f2b092582b9f1
99 Nd839e1017e9f458995cebffabc7cc885 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Gene Expression Profiling
101 rdf:type schema:DefinedTerm
102 Nd9a3e5316c3f467f8e344b12c5313bd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Analysis of Variance
104 rdf:type schema:DefinedTerm
105 Ndd02180344ad4467a51a83eb7dc95b2f schema:name doi
106 schema:value 10.1186/1471-2105-8-234
107 rdf:type schema:PropertyValue
108 Nedc3c04011e84530ab6f2b092582b9f1 rdf:first sg:person.0733543446.54
109 rdf:rest Nac44ec47b78c4545ba6ed7e8f9076710
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
114 schema:name Analytical Chemistry
115 rdf:type schema:DefinedTerm
116 sg:journal.1023786 schema:issn 1471-2105
117 schema:name BMC Bioinformatics
118 rdf:type schema:Periodical
119 sg:person.01112544071.19 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
120 schema:familyName Ludwig
121 schema:givenName Christian
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112544071.19
123 rdf:type schema:Person
124 sg:person.01140655554.38 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
125 schema:familyName Viant
126 schema:givenName Mark R
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38
128 rdf:type schema:Person
129 sg:person.0733543446.54 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
130 schema:familyName Günther
131 schema:givenName Ulrich L
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733543446.54
133 rdf:type schema:Person
134 sg:person.0761727616.75 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
135 schema:familyName Parsons
136 schema:givenName Helen M
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761727616.75
138 rdf:type schema:Person
139 sg:pub.10.1007/s10886-006-9152-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006993420
140 https://doi.org/10.1007/s10886-006-9152-6
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11306-005-4429-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002168056
143 https://doi.org/10.1007/s11306-005-4429-2
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11306-006-0043-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043049251
146 https://doi.org/10.1007/s11306-006-0043-1
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11306-007-0092-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012239022
149 https://doi.org/10.1007/s11306-007-0092-0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ng1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021837407
152 https://doi.org/10.1038/ng1031
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2164-7-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004880490
155 https://doi.org/10.1186/1471-2164-7-142
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1006/jmre.2000.2121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009673795
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0308-8146(95)00220-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043459758
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ab.2003.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048429526
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.bbrc.2003.09.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022502205
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.phytochem.2006.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012295411
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.tibtech.2004.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037967197
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0003-2670(03)00060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037464786
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0003-2670(03)00094-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052521103
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0079-6565(00)00036-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021522769
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/ac0156870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054993313
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/ac0519312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004070508
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/es062745w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055500123
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1074/jbc.m410200200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042869470
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1089/1536231041388348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059215071
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/18.suppl_1.s105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031487565
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/btg107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019137780
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/btg178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028743071
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/btg245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001131541
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
194 schema:name Centre for Systems Biology, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK
195 School of Biosciences, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK
196 The Henry Wellcome Building for Biomolecular NMR Spectroscopy, The University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...