Establishing a major cause of discrepancy in the calibration of Affymetrix GeneChips View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Andrew P Harrison, Caroline E Johnston, Christine A Orengo

ABSTRACT

BACKGROUND: Affymetrix GeneChips are a popular platform for performing whole-genome experiments on the transcriptome. There are a range of different calibration steps, and users are presented with choices of different background subtractions, normalisations and expression measures. We wished to establish which of the calibration steps resulted in the biggest uncertainty in the sets of genes reported to be differentially expressed. RESULTS: Our results indicate that the sets of genes identified as being most significantly differentially expressed, as estimated by the z-score of fold change, is relatively insensitive to the choice of background subtraction and normalisation. However, the contents of the gene list are most sensitive to the choice of expression measure. This is irrespective of whether the experiment uses a rat, mouse or human chip and whether the chip definition is made using probe mappings from Unigene, RefSeq, Entrez Gene or the original Affymetrix definitions. It is also irrespective of whether both Present and Absent, or just Present, Calls from the MAS5 algorithm are used to filter genelists, and this conclusion holds for genes of differing intensities. We also reach the same conclusion after assigning genes to be differentially expressed using t-statistics, although this approach results in a large amount of false positives in the sets of genes identified due to the small numbers of replicates typically used in microarray experiments. CONCLUSION: The major calibration uncertainty that biologists need to consider when analysing Affymetrix data is how their multiple probe values are condensed into one expression measure. More... »

PAGES

195

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-195

DOI

http://dx.doi.org/10.1186/1471-2105-8-195

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002554926

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17562008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Essex", 
          "id": "https://www.grid.ac/institutes/grid.8356.8", 
          "name": [
            "Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, Essex, UK", 
            "Department of Mathematical Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, Essex, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harrison", 
        "givenName": "Andrew P", 
        "id": "sg:person.0736002437.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736002437.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Essex", 
          "id": "https://www.grid.ac/institutes/grid.8356.8", 
          "name": [
            "Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, Essex, UK", 
            "Department of Mathematical Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, Essex, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnston", 
        "givenName": "Caroline E", 
        "id": "sg:person.01046471202.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046471202.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Department of Biochemistry, University College London, Gower Street, WC1E 6BT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orengo", 
        "givenName": "Christine A", 
        "id": "sg:person.01136244107.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00077.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000278559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00077.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000278559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.091062498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001631710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0107-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001870172", 
          "https://doi.org/10.1038/nbt0107-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0107-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001870172", 
          "https://doi.org/10.1038/nbt0107-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.1.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005356386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930818", 
          "https://doi.org/10.1038/ng1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930818", 
          "https://doi.org/10.1038/ng1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.011906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007159879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.011906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007159879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010141270", 
          "https://doi.org/10.1038/nbt1322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011853799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013118634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014125606", 
          "https://doi.org/10.1007/0-387-29362-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014125606", 
          "https://doi.org/10.1007/0-387-29362-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.192571199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014374829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015685857", 
          "https://doi.org/10.1038/ng1429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015685857", 
          "https://doi.org/10.1038/ng1429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018968648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-3-1-research0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020040410", 
          "https://doi.org/10.1186/gb-2001-3-1-research0005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00822942-200605040-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023060099", 
          "https://doi.org/10.2165/00822942-200605040-00006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-9-research0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023994561", 
          "https://doi.org/10.1186/gb-2002-3-9-research0048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028500059", 
          "https://doi.org/10.1186/gb-2002-3-7-research0033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033237811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0107-26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033239614", 
          "https://doi.org/10.1038/nbt0107-26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0107-26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033239614", 
          "https://doi.org/10.1038/nbt0107-26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00522.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033938162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00522.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033938162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034900645", 
          "https://doi.org/10.1038/nbt1238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034900645", 
          "https://doi.org/10.1038/nbt1238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036714500", 
          "https://doi.org/10.1038/nbt836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036714500", 
          "https://doi.org/10.1038/nbt836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/4.2.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037543114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039794307", 
          "https://doi.org/10.1186/1471-2105-6-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039794307", 
          "https://doi.org/10.1186/1471-2105-6-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040526112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043980623", 
          "https://doi.org/10.1186/1471-2105-8-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s2-s11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045018041", 
          "https://doi.org/10.1186/1471-2105-6-s2-s11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053642900", 
          "https://doi.org/10.1186/1471-2105-7-395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077036403", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Affymetrix GeneChips are a popular platform for performing whole-genome experiments on the transcriptome. There are a range of different calibration steps, and users are presented with choices of different background subtractions, normalisations and expression measures. We wished to establish which of the calibration steps resulted in the biggest uncertainty in the sets of genes reported to be differentially expressed.\nRESULTS: Our results indicate that the sets of genes identified as being most significantly differentially expressed, as estimated by the z-score of fold change, is relatively insensitive to the choice of background subtraction and normalisation. However, the contents of the gene list are most sensitive to the choice of expression measure. This is irrespective of whether the experiment uses a rat, mouse or human chip and whether the chip definition is made using probe mappings from Unigene, RefSeq, Entrez Gene or the original Affymetrix definitions. It is also irrespective of whether both Present and Absent, or just Present, Calls from the MAS5 algorithm are used to filter genelists, and this conclusion holds for genes of differing intensities. We also reach the same conclusion after assigning genes to be differentially expressed using t-statistics, although this approach results in a large amount of false positives in the sets of genes identified due to the small numbers of replicates typically used in microarray experiments.\nCONCLUSION: The major calibration uncertainty that biologists need to consider when analysing Affymetrix data is how their multiple probe values are condensed into one expression measure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-195", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2764459", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Establishing a major cause of discrepancy in the calibration of Affymetrix GeneChips", 
    "pagination": "195", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0c2a3534451ee3c2b7ea9c53f2a6f96004fdb090e200e2b0edf7fe84e829946d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17562008"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-195"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002554926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-195", 
      "https://app.dimensions.ai/details/publication/pub.1002554926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-8-195"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-195'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-195'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-195'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-195'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      69 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-195 schema:about N1569896ded7048ecb7948b96f2052fcc
2 N1b2252fea03349148466ca39e74a4b7c
3 N3712f70af44a47cb90a208aecc07d408
4 N3dfc57d754074825aeb4e8afd08fe65e
5 N692032852e904233b79e0a04aab1bfdd
6 N78f0253a4d764249830f30d618a049b3
7 Nb019e328a2e548afbd65d8da8931a752
8 Nb6c824fba5f9420fa3e7487cd4ee5c70
9 Ne09bcf7b1a8249a3b6d025fe7e02ff5f
10 Nf6f12712ead44d389d2cb231ea6b4282
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Nd2916d9fab0e4803ac6365d4f100f0d2
14 schema:citation sg:pub.10.1007/0-387-29362-0
15 sg:pub.10.1038/nbt0107-25
16 sg:pub.10.1038/nbt0107-26
17 sg:pub.10.1038/nbt1238
18 sg:pub.10.1038/nbt1322
19 sg:pub.10.1038/nbt836
20 sg:pub.10.1038/ng1032
21 sg:pub.10.1038/ng1429
22 sg:pub.10.1186/1471-2105-6-80
23 sg:pub.10.1186/1471-2105-6-s2-s11
24 sg:pub.10.1186/1471-2105-7-395
25 sg:pub.10.1186/1471-2105-8-13
26 sg:pub.10.1186/gb-2001-3-1-research0005
27 sg:pub.10.1186/gb-2002-3-7-research0033
28 sg:pub.10.1186/gb-2002-3-9-research0048
29 sg:pub.10.2165/00822942-200605040-00006
30 https://app.dimensions.ai/details/publication/pub.1077036403
31 https://doi.org/10.1073/pnas.091062498
32 https://doi.org/10.1073/pnas.192571199
33 https://doi.org/10.1073/pnas.98.1.31
34 https://doi.org/10.1093/bioinformatics/19.2.185
35 https://doi.org/10.1093/bioinformatics/btg487
36 https://doi.org/10.1093/bioinformatics/btk046
37 https://doi.org/10.1093/biostatistics/4.2.249
38 https://doi.org/10.1093/nar/gkg283
39 https://doi.org/10.1093/nar/gki022
40 https://doi.org/10.1093/nar/gni179
41 https://doi.org/10.1103/physreve.68.011906
42 https://doi.org/10.1152/japplphysiol.00522.2005
43 https://doi.org/10.1152/physiolgenomics.00077.2005
44 schema:datePublished 2007-12
45 schema:datePublishedReg 2007-12-01
46 schema:description BACKGROUND: Affymetrix GeneChips are a popular platform for performing whole-genome experiments on the transcriptome. There are a range of different calibration steps, and users are presented with choices of different background subtractions, normalisations and expression measures. We wished to establish which of the calibration steps resulted in the biggest uncertainty in the sets of genes reported to be differentially expressed. RESULTS: Our results indicate that the sets of genes identified as being most significantly differentially expressed, as estimated by the z-score of fold change, is relatively insensitive to the choice of background subtraction and normalisation. However, the contents of the gene list are most sensitive to the choice of expression measure. This is irrespective of whether the experiment uses a rat, mouse or human chip and whether the chip definition is made using probe mappings from Unigene, RefSeq, Entrez Gene or the original Affymetrix definitions. It is also irrespective of whether both Present and Absent, or just Present, Calls from the MAS5 algorithm are used to filter genelists, and this conclusion holds for genes of differing intensities. We also reach the same conclusion after assigning genes to be differentially expressed using t-statistics, although this approach results in a large amount of false positives in the sets of genes identified due to the small numbers of replicates typically used in microarray experiments. CONCLUSION: The major calibration uncertainty that biologists need to consider when analysing Affymetrix data is how their multiple probe values are condensed into one expression measure.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N46b537fe0b82435e86dbb0fc7347e7dd
51 Nba49c1904a8d4a55bd155585b53a495e
52 sg:journal.1023786
53 schema:name Establishing a major cause of discrepancy in the calibration of Affymetrix GeneChips
54 schema:pagination 195
55 schema:productId N21053bb3e75942e69e759d964a14298b
56 N255feb1cc5654ce58f6a69cfb89f0302
57 Nbaea6627d33a4148a0b4fc1257b3dafa
58 Nfc47b173bde443b491f54189eca21617
59 Nff7d787863f549c0a5e7f3e623d46924
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002554926
61 https://doi.org/10.1186/1471-2105-8-195
62 schema:sdDatePublished 2019-04-10T17:29
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ndf893366afcc4e7fb99b25a981dca31f
65 schema:url http://link.springer.com/10.1186%2F1471-2105-8-195
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N1569896ded7048ecb7948b96f2052fcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name United Kingdom
71 rdf:type schema:DefinedTerm
72 N1b2252fea03349148466ca39e74a4b7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Sensitivity and Specificity
74 rdf:type schema:DefinedTerm
75 N21053bb3e75942e69e759d964a14298b schema:name dimensions_id
76 schema:value pub.1002554926
77 rdf:type schema:PropertyValue
78 N255feb1cc5654ce58f6a69cfb89f0302 schema:name nlm_unique_id
79 schema:value 100965194
80 rdf:type schema:PropertyValue
81 N3712f70af44a47cb90a208aecc07d408 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Gene Expression Profiling
83 rdf:type schema:DefinedTerm
84 N3dfc57d754074825aeb4e8afd08fe65e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Reproducibility of Results
86 rdf:type schema:DefinedTerm
87 N46b537fe0b82435e86dbb0fc7347e7dd schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N692032852e904233b79e0a04aab1bfdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Calibration
91 rdf:type schema:DefinedTerm
92 N78f0253a4d764249830f30d618a049b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Oligonucleotide Array Sequence Analysis
94 rdf:type schema:DefinedTerm
95 N83522c53cc2a4f1f9d95b90ee48d0e9c rdf:first sg:person.01136244107.52
96 rdf:rest rdf:nil
97 N936db7f3ea9c42318a9533688a8ff068 rdf:first sg:person.01046471202.02
98 rdf:rest N83522c53cc2a4f1f9d95b90ee48d0e9c
99 Nb019e328a2e548afbd65d8da8931a752 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Algorithms
101 rdf:type schema:DefinedTerm
102 Nb6c824fba5f9420fa3e7487cd4ee5c70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Quality Control
104 rdf:type schema:DefinedTerm
105 Nba49c1904a8d4a55bd155585b53a495e schema:volumeNumber 8
106 rdf:type schema:PublicationVolume
107 Nbaea6627d33a4148a0b4fc1257b3dafa schema:name readcube_id
108 schema:value 0c2a3534451ee3c2b7ea9c53f2a6f96004fdb090e200e2b0edf7fe84e829946d
109 rdf:type schema:PropertyValue
110 Nd2916d9fab0e4803ac6365d4f100f0d2 rdf:first sg:person.0736002437.81
111 rdf:rest N936db7f3ea9c42318a9533688a8ff068
112 Ndf893366afcc4e7fb99b25a981dca31f schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ne09bcf7b1a8249a3b6d025fe7e02ff5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Data Interpretation, Statistical
116 rdf:type schema:DefinedTerm
117 Nf6f12712ead44d389d2cb231ea6b4282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Artifacts
119 rdf:type schema:DefinedTerm
120 Nfc47b173bde443b491f54189eca21617 schema:name doi
121 schema:value 10.1186/1471-2105-8-195
122 rdf:type schema:PropertyValue
123 Nff7d787863f549c0a5e7f3e623d46924 schema:name pubmed_id
124 schema:value 17562008
125 rdf:type schema:PropertyValue
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
130 schema:name Genetics
131 rdf:type schema:DefinedTerm
132 sg:grant.2764459 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-195
133 rdf:type schema:MonetaryGrant
134 sg:journal.1023786 schema:issn 1471-2105
135 schema:name BMC Bioinformatics
136 rdf:type schema:Periodical
137 sg:person.01046471202.02 schema:affiliation https://www.grid.ac/institutes/grid.8356.8
138 schema:familyName Johnston
139 schema:givenName Caroline E
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046471202.02
141 rdf:type schema:Person
142 sg:person.01136244107.52 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
143 schema:familyName Orengo
144 schema:givenName Christine A
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52
146 rdf:type schema:Person
147 sg:person.0736002437.81 schema:affiliation https://www.grid.ac/institutes/grid.8356.8
148 schema:familyName Harrison
149 schema:givenName Andrew P
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736002437.81
151 rdf:type schema:Person
152 sg:pub.10.1007/0-387-29362-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014125606
153 https://doi.org/10.1007/0-387-29362-0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nbt0107-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001870172
156 https://doi.org/10.1038/nbt0107-25
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nbt0107-26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033239614
159 https://doi.org/10.1038/nbt0107-26
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nbt1238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034900645
162 https://doi.org/10.1038/nbt1238
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nbt1322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010141270
165 https://doi.org/10.1038/nbt1322
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nbt836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036714500
168 https://doi.org/10.1038/nbt836
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ng1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006930818
171 https://doi.org/10.1038/ng1032
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ng1429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015685857
174 https://doi.org/10.1038/ng1429
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1471-2105-6-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039794307
177 https://doi.org/10.1186/1471-2105-6-80
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1471-2105-6-s2-s11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045018041
180 https://doi.org/10.1186/1471-2105-6-s2-s11
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1471-2105-7-395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053642900
183 https://doi.org/10.1186/1471-2105-7-395
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1471-2105-8-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043980623
186 https://doi.org/10.1186/1471-2105-8-13
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/gb-2001-3-1-research0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020040410
189 https://doi.org/10.1186/gb-2001-3-1-research0005
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/gb-2002-3-7-research0033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028500059
192 https://doi.org/10.1186/gb-2002-3-7-research0033
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/gb-2002-3-9-research0048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023994561
195 https://doi.org/10.1186/gb-2002-3-9-research0048
196 rdf:type schema:CreativeWork
197 sg:pub.10.2165/00822942-200605040-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023060099
198 https://doi.org/10.2165/00822942-200605040-00006
199 rdf:type schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1077036403 schema:CreativeWork
201 https://doi.org/10.1073/pnas.091062498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631710
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.192571199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014374829
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.98.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005356386
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/19.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011853799
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/btg487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013223481
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/btk046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013118634
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/biostatistics/4.2.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543114
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gkg283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018968648
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gki022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237811
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gni179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040526112
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physreve.68.011906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007159879
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1152/japplphysiol.00522.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033938162
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1152/physiolgenomics.00077.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000278559
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
228 schema:name Department of Biochemistry, University College London, Gower Street, WC1E 6BT, London, UK
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.8356.8 schema:alternateName University of Essex
231 schema:name Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, Essex, UK
232 Department of Mathematical Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, Essex, UK
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...