Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Raja Jothi, Teresa M Przytycka, L Aravind

ABSTRACT

BACKGROUND: A widely-used approach for discovering functional and physical interactions among proteins involves phylogenetic profile comparisons (PPCs). Here, proteins with similar profiles are inferred to be functionally related under the assumption that proteins involved in the same metabolic pathway or cellular system are likely to have been co-inherited during evolution. RESULTS: Our experimentation with E. coli and yeast proteins with 16 different carefully composed reference sets of genomes revealed that the phyletic patterns of proteins in prokaryotes alone could be adequate enough to make reasonably accurate functional linkage predictions. A slight improvement in performance is observed on adding few eukaryotes into the reference set, but a noticeable drop-off in performance is observed with increased number of eukaryotes. Inclusion of most parasitic, pathogenic or vertebrate genomes and multiple strains of the same species into the reference set do not necessarily contribute to an improved sensitivity or accuracy. Interestingly, we also found that evolutionary histories of individual pathways have a significant affect on the performance of the PPC approach with respect to a particular reference set. For example, to accurately predict functional links in carbohydrate or lipid metabolism, a reference set solely composed of prokaryotic (or bacterial) genomes performed among the best compared to one composed of genomes from all three super-kingdoms; this is in contrast to predicting functional links in translation for which a reference set composed of prokaryotic (or bacterial) genomes performed the worst. We also demonstrate that the widely used random null model to quantify the statistical significance of profile similarity is incomplete, which could result in an increased number of false-positives. CONCLUSION: Contrary to previous proposals, it is not merely the number of genomes but a careful selection of informative genomes in the reference set that influences the prediction accuracy of the PPC approach. We note that the predictive power of the PPC approach, especially in eukaryotes, is heavily influenced by the primary endosymbiosis and subsequent bacterial contributions. The over-representation of parasitic unicellular eukaryotes and vertebrates additionally make eukaryotes less useful in the reference sets. Reference sets composed of highly non-redundant set of genomes from all three super-kingdoms fare better with pathways showing considerable vertical inheritance and strong conservation (e.g. translation apparatus), while reference sets solely composed of prokaryotic genomes fare better for more variable pathways like carbohydrate metabolism. Differential performance of the PPC approach on various pathways, and a weak positive correlation between functional and profile similarities suggest that caution should be exercised while interpreting functional linkages inferred from genome-wide large-scale profile comparisons using a single reference set. More... »

PAGES

173

References to SciGraph publications

  • 1999-11. Protein interaction maps for complete genomes based on gene fusion events in NATURE
  • 2004-07. Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1 in GENOME BIOLOGY
  • 2006-03. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae in NATURE
  • 2004-07. Phylogenetic profiling of the Arabidopsis thalianaproteome: what proteins distinguish plants from other organisms? in GENOME BIOLOGY
  • 2003-12. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes in BMC EVOLUTIONARY BIOLOGY
  • 2002-11. The origin and evolution of model organisms in NATURE REVIEWS GENETICS
  • 2004-05. Detection of evolutionarily stable fragments of cellular pathways by hierarchical clustering of phyletic patterns in GENOME BIOLOGY
  • 2002-10. Genomic functional annotation using co-evolution profiles of gene clusters in GENOME BIOLOGY
  • 2005-02. Interaction network containing conserved and essential protein complexes in Escherichia coli in NATURE
  • 2006-12. Comparative assessment of performance and genome dependence among phylogenetic profiling methods in BMC BIOINFORMATICS
  • 2001-01. The protein–protein interaction map of Helicobacter pylori in NATURE
  • 1997-01. Conserved Clusters of Functionally Related Genes in Two Bacterial Genomes in JOURNAL OF MOLECULAR EVOLUTION
  • 2006-12. Gene annotation and network inference by phylogenetic profiling in BMC BIOINFORMATICS
  • 2003-09. Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages in NATURE BIOTECHNOLOGY
  • 2000-02. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae in NATURE
  • 2006-12. Extraction of phylogenetic network modules from the metabolic network in BMC BIOINFORMATICS
  • 2003-09. Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: a combined computational approach in GENOME BIOLOGY
  • 2002-01. Functional organization of the yeast proteome by systematic analysis of protein complexes in NATURE
  • 2005-02. Detection of parallel functional modules by comparative analysis of genome sequences in NATURE BIOTECHNOLOGY
  • 2005-12. Computational verification of protein-protein interactions by orthologous co-expression in BMC BIOINFORMATICS
  • 2004-05. Prolinks: a database of protein functional linkages derived from coevolution in GENOME BIOLOGY
  • 2005-10. Towards a proteome-scale map of the human protein–protein interaction network in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-8-173

    DOI

    http://dx.doi.org/10.1186/1471-2105-8-173

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024236149

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17521444


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linkage Disequilibrium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Structure-Activity Relationship", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Center for Biotechnology Information", 
              "id": "https://www.grid.ac/institutes/grid.419234.9", 
              "name": [
                "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jothi", 
            "givenName": "Raja", 
            "id": "sg:person.01303253115.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303253115.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Center for Biotechnology Information", 
              "id": "https://www.grid.ac/institutes/grid.419234.9", 
              "name": [
                "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Przytycka", 
            "givenName": "Teresa M", 
            "id": "sg:person.01325035263.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325035263.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Center for Biotechnology Information", 
              "id": "https://www.grid.ac/institutes/grid.419234.9", 
              "name": [
                "National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aravind", 
            "givenName": "L", 
            "id": "sg:person.01106662166.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106662166.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000384014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415141a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001484556", 
              "https://doi.org/10.1038/415141a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415141a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001484556", 
              "https://doi.org/10.1038/415141a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001607980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003407382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2006.07.072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005009454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005168533", 
              "https://doi.org/10.1186/1471-2105-7-130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0010065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005199987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-8-r53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005344681", 
              "https://doi.org/10.1186/gb-2004-5-8-r53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.678303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006204615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006733745", 
              "https://doi.org/10.1038/nature04209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006733745", 
              "https://doi.org/10.1038/nature04209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/iai.74.2.1233-1242.2006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006824315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2005.08.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008327797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008948873", 
              "https://doi.org/10.1038/nature03239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008948873", 
              "https://doi.org/10.1038/nature03239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.21347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009004682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010718498", 
              "https://doi.org/10.1038/nbt1065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010718498", 
              "https://doi.org/10.1038/nbt1065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1993504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011310104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-0004(98)01274-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011500385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012306604", 
              "https://doi.org/10.1186/1471-2105-7-80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5428.751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013411081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013618994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(03)00009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017180864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(03)00009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017180864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017271040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2004.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017661582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.2136809100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018259834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1586704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018586731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-9-r59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018960517", 
              "https://doi.org/10.1186/gb-2003-4-9-r59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2005.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019040099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2005.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019040099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019155361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.061034498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019323411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019354074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019967912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0505147102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020201838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022032213", 
              "https://doi.org/10.1038/nbt861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022032213", 
              "https://doi.org/10.1038/nbt861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2006.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022071757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.209402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022503148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.246903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022772999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.8.4285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022990732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m512864200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024095648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027030029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0010003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027276300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(02)01038-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028157709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(02)01038-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028157709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.104.043687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028535448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1090289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029676590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/47056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029720868", 
              "https://doi.org/10.1038/47056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/47056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029720868", 
              "https://doi.org/10.1038/47056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.11.5849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031199342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032726905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032726905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032923386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033456836", 
              "https://doi.org/10.1038/nature04670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033456836", 
              "https://doi.org/10.1038/nature04670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033456836", 
              "https://doi.org/10.1038/nature04670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034583416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034991761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773549", 
              "https://doi.org/10.1038/35001009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773549", 
              "https://doi.org/10.1038/35001009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.2700304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035879618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036086546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036203143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(03)00114-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036437267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.3732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037240003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1092603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037787590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msi024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037928048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2002-3-11-research0060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038801625", 
              "https://doi.org/10.1186/gb-2002-3-11-research0060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039153176", 
              "https://doi.org/10.1186/1471-2105-7-420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039503590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5338.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039646901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1969504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040145823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.182380799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041283638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041641433", 
              "https://doi.org/10.1038/nrg929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041641433", 
              "https://doi.org/10.1038/nrg929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti1009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041692878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043964210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0402591101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044213014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044533390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2005.04946.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045561266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2005.04946.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045561266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045785762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047635604", 
              "https://doi.org/10.1186/1471-2105-6-40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-3-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047997844", 
              "https://doi.org/10.1186/1471-2148-3-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.20830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048185111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.20830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048185111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048256009", 
              "https://doi.org/10.1007/pl00006122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.4336406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048796063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.220399497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049047277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3069205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049120726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-8-r52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050518624", 
              "https://doi.org/10.1186/gb-2004-5-8-r52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35051615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051051507", 
              "https://doi.org/10.1038/35051615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35051615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051051507", 
              "https://doi.org/10.1038/35051615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/protein/14.9.609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051084913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051303573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/30.1.306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051920919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-5-r35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052229286", 
              "https://doi.org/10.1186/gb-2004-5-5-r35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052255226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.2433104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052316981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1239303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052744398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1610504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053620733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1099511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1103330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2004-5-5-r32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064134838", 
              "https://doi.org/10.1186/2004-5-5-r32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/omi.1.1998.3.199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074253329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074854613", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077282406", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-12", 
        "datePublishedReg": "2007-12-01", 
        "description": "BACKGROUND: A widely-used approach for discovering functional and physical interactions among proteins involves phylogenetic profile comparisons (PPCs). Here, proteins with similar profiles are inferred to be functionally related under the assumption that proteins involved in the same metabolic pathway or cellular system are likely to have been co-inherited during evolution.\nRESULTS: Our experimentation with E. coli and yeast proteins with 16 different carefully composed reference sets of genomes revealed that the phyletic patterns of proteins in prokaryotes alone could be adequate enough to make reasonably accurate functional linkage predictions. A slight improvement in performance is observed on adding few eukaryotes into the reference set, but a noticeable drop-off in performance is observed with increased number of eukaryotes. Inclusion of most parasitic, pathogenic or vertebrate genomes and multiple strains of the same species into the reference set do not necessarily contribute to an improved sensitivity or accuracy. Interestingly, we also found that evolutionary histories of individual pathways have a significant affect on the performance of the PPC approach with respect to a particular reference set. For example, to accurately predict functional links in carbohydrate or lipid metabolism, a reference set solely composed of prokaryotic (or bacterial) genomes performed among the best compared to one composed of genomes from all three super-kingdoms; this is in contrast to predicting functional links in translation for which a reference set composed of prokaryotic (or bacterial) genomes performed the worst. We also demonstrate that the widely used random null model to quantify the statistical significance of profile similarity is incomplete, which could result in an increased number of false-positives.\nCONCLUSION: Contrary to previous proposals, it is not merely the number of genomes but a careful selection of informative genomes in the reference set that influences the prediction accuracy of the PPC approach. We note that the predictive power of the PPC approach, especially in eukaryotes, is heavily influenced by the primary endosymbiosis and subsequent bacterial contributions. The over-representation of parasitic unicellular eukaryotes and vertebrates additionally make eukaryotes less useful in the reference sets. Reference sets composed of highly non-redundant set of genomes from all three super-kingdoms fare better with pathways showing considerable vertical inheritance and strong conservation (e.g. translation apparatus), while reference sets solely composed of prokaryotic genomes fare better for more variable pathways like carbohydrate metabolism. Differential performance of the PPC approach on various pathways, and a weak positive correlation between functional and profile similarities suggest that caution should be exercised while interpreting functional linkages inferred from genome-wide large-scale profile comparisons using a single reference set.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2105-8-173", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2720312", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment", 
        "pagination": "173", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7376d2e9edc68fdd0c33e24fe685db2d1d569d329f76c12fc9fdb1f34e0b5fc2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17521444"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-8-173"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024236149"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-8-173", 
          "https://app.dimensions.ai/details/publication/pub.1024236149"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2105-8-173"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-173'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-173'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-173'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-173'


     

    This table displays all metadata directly associated to this object as RDF triples.

    438 TRIPLES      21 PREDICATES      136 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-8-173 schema:about N0893c760ddba48deb602a49729b39208
    2 N0b445f5144cb43ae8d7fc8a9cc5876e4
    3 N2518ba43758649df8c77722d29d9d8a9
    4 N43183cf24edd4fb09ef64c42efa09a0a
    5 N511583d915614265ae59586fdaeee990
    6 N5784a13099b641f390bbff65ca5db8ee
    7 Na2495466481b4caf8ad50dd366ddeaf2
    8 Na4f7d3af55f642b78d971320b676ee01
    9 Ncf4ae3e98fcf4137adfb2398f72ec0f4
    10 Nd9709dbbb54c461ca1fbcc54eda51128
    11 Nd9fbd15140f54c6e9e0ec4d05dccf3bf
    12 Ndbd7a00088e24d579308adb207e32071
    13 Nfbf22f80c9724ed1aa1b25511cc11a69
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author Nd67774f3e7534285970ddd7a8b3c5052
    17 schema:citation sg:pub.10.1007/pl00006122
    18 sg:pub.10.1038/35001009
    19 sg:pub.10.1038/35051615
    20 sg:pub.10.1038/415141a
    21 sg:pub.10.1038/47056
    22 sg:pub.10.1038/nature03239
    23 sg:pub.10.1038/nature04209
    24 sg:pub.10.1038/nature04670
    25 sg:pub.10.1038/nbt1065
    26 sg:pub.10.1038/nbt861
    27 sg:pub.10.1038/nrg929
    28 sg:pub.10.1186/1471-2105-6-40
    29 sg:pub.10.1186/1471-2105-7-130
    30 sg:pub.10.1186/1471-2105-7-420
    31 sg:pub.10.1186/1471-2105-7-80
    32 sg:pub.10.1186/1471-2148-3-2
    33 sg:pub.10.1186/2004-5-5-r32
    34 sg:pub.10.1186/gb-2002-3-11-research0060
    35 sg:pub.10.1186/gb-2003-4-9-r59
    36 sg:pub.10.1186/gb-2004-5-5-r35
    37 sg:pub.10.1186/gb-2004-5-8-r52
    38 sg:pub.10.1186/gb-2004-5-8-r53
    39 https://app.dimensions.ai/details/publication/pub.1074854613
    40 https://app.dimensions.ai/details/publication/pub.1077282406
    41 https://doi.org/10.1002/prot.20830
    42 https://doi.org/10.1002/prot.21347
    43 https://doi.org/10.1006/jmbi.2000.3732
    44 https://doi.org/10.1016/j.cell.2005.08.029
    45 https://doi.org/10.1016/j.jmb.2004.10.019
    46 https://doi.org/10.1016/j.jmb.2005.07.005
    47 https://doi.org/10.1016/j.jmb.2006.04.011
    48 https://doi.org/10.1016/j.jmb.2006.07.072
    49 https://doi.org/10.1016/s0022-2836(02)01038-0
    50 https://doi.org/10.1016/s0022-2836(03)00114-1
    51 https://doi.org/10.1016/s0022-2836(05)80360-2
    52 https://doi.org/10.1016/s0960-9822(03)00009-5
    53 https://doi.org/10.1016/s0968-0004(98)01274-2
    54 https://doi.org/10.1073/pnas.0402591101
    55 https://doi.org/10.1073/pnas.0505147102
    56 https://doi.org/10.1073/pnas.061034498
    57 https://doi.org/10.1073/pnas.182380799
    58 https://doi.org/10.1073/pnas.2136809100
    59 https://doi.org/10.1073/pnas.220399497
    60 https://doi.org/10.1073/pnas.95.11.5849
    61 https://doi.org/10.1073/pnas.96.8.4285
    62 https://doi.org/10.1074/jbc.m512864200
    63 https://doi.org/10.1089/omi.1.1998.3.199
    64 https://doi.org/10.1093/bioinformatics/btg187
    65 https://doi.org/10.1093/bioinformatics/btg278
    66 https://doi.org/10.1093/bioinformatics/bti027
    67 https://doi.org/10.1093/bioinformatics/bti1009
    68 https://doi.org/10.1093/bioinformatics/bti313
    69 https://doi.org/10.1093/bioinformatics/bti532
    70 https://doi.org/10.1093/bioinformatics/bti564
    71 https://doi.org/10.1093/bioinformatics/bti723
    72 https://doi.org/10.1093/bioinformatics/btl286
    73 https://doi.org/10.1093/molbev/msi024
    74 https://doi.org/10.1093/nar/30.1.306
    75 https://doi.org/10.1093/nar/gkg034
    76 https://doi.org/10.1093/nar/gkg109
    77 https://doi.org/10.1093/nar/gkg924
    78 https://doi.org/10.1093/nar/gkh063
    79 https://doi.org/10.1093/nar/gkh555
    80 https://doi.org/10.1093/nar/gkh605
    81 https://doi.org/10.1093/nar/gkh885
    82 https://doi.org/10.1093/nar/gki030
    83 https://doi.org/10.1093/nar/gki573
    84 https://doi.org/10.1093/nar/gkj406
    85 https://doi.org/10.1093/nar/gkj496
    86 https://doi.org/10.1093/nar/gkl438
    87 https://doi.org/10.1093/protein/14.9.609
    88 https://doi.org/10.1101/gr.1092603
    89 https://doi.org/10.1101/gr.1239303
    90 https://doi.org/10.1101/gr.1586704
    91 https://doi.org/10.1101/gr.1610504
    92 https://doi.org/10.1101/gr.1969504
    93 https://doi.org/10.1101/gr.1993504
    94 https://doi.org/10.1101/gr.209402
    95 https://doi.org/10.1101/gr.2433104
    96 https://doi.org/10.1101/gr.246903
    97 https://doi.org/10.1101/gr.2700304
    98 https://doi.org/10.1101/gr.3069205
    99 https://doi.org/10.1101/gr.4336406
    100 https://doi.org/10.1101/gr.678303
    101 https://doi.org/10.1104/pp.104.043687
    102 https://doi.org/10.1111/j.1742-4658.2005.04946.x
    103 https://doi.org/10.1126/science.1090289
    104 https://doi.org/10.1126/science.1099511
    105 https://doi.org/10.1126/science.1103330
    106 https://doi.org/10.1126/science.278.5338.631
    107 https://doi.org/10.1126/science.285.5428.751
    108 https://doi.org/10.1128/iai.74.2.1233-1242.2006
    109 https://doi.org/10.1371/journal.pcbi.0010003
    110 https://doi.org/10.1371/journal.pgen.0010065
    111 schema:datePublished 2007-12
    112 schema:datePublishedReg 2007-12-01
    113 schema:description BACKGROUND: A widely-used approach for discovering functional and physical interactions among proteins involves phylogenetic profile comparisons (PPCs). Here, proteins with similar profiles are inferred to be functionally related under the assumption that proteins involved in the same metabolic pathway or cellular system are likely to have been co-inherited during evolution. RESULTS: Our experimentation with E. coli and yeast proteins with 16 different carefully composed reference sets of genomes revealed that the phyletic patterns of proteins in prokaryotes alone could be adequate enough to make reasonably accurate functional linkage predictions. A slight improvement in performance is observed on adding few eukaryotes into the reference set, but a noticeable drop-off in performance is observed with increased number of eukaryotes. Inclusion of most parasitic, pathogenic or vertebrate genomes and multiple strains of the same species into the reference set do not necessarily contribute to an improved sensitivity or accuracy. Interestingly, we also found that evolutionary histories of individual pathways have a significant affect on the performance of the PPC approach with respect to a particular reference set. For example, to accurately predict functional links in carbohydrate or lipid metabolism, a reference set solely composed of prokaryotic (or bacterial) genomes performed among the best compared to one composed of genomes from all three super-kingdoms; this is in contrast to predicting functional links in translation for which a reference set composed of prokaryotic (or bacterial) genomes performed the worst. We also demonstrate that the widely used random null model to quantify the statistical significance of profile similarity is incomplete, which could result in an increased number of false-positives. CONCLUSION: Contrary to previous proposals, it is not merely the number of genomes but a careful selection of informative genomes in the reference set that influences the prediction accuracy of the PPC approach. We note that the predictive power of the PPC approach, especially in eukaryotes, is heavily influenced by the primary endosymbiosis and subsequent bacterial contributions. The over-representation of parasitic unicellular eukaryotes and vertebrates additionally make eukaryotes less useful in the reference sets. Reference sets composed of highly non-redundant set of genomes from all three super-kingdoms fare better with pathways showing considerable vertical inheritance and strong conservation (e.g. translation apparatus), while reference sets solely composed of prokaryotic genomes fare better for more variable pathways like carbohydrate metabolism. Differential performance of the PPC approach on various pathways, and a weak positive correlation between functional and profile similarities suggest that caution should be exercised while interpreting functional linkages inferred from genome-wide large-scale profile comparisons using a single reference set.
    114 schema:genre research_article
    115 schema:inLanguage en
    116 schema:isAccessibleForFree true
    117 schema:isPartOf N680b60df092c4d3689ce635ba4e6ee41
    118 Nb7aa0a45ba08424981c066eaab66fc45
    119 sg:journal.1023786
    120 schema:name Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment
    121 schema:pagination 173
    122 schema:productId N0474ff35a44d4e848fdb0444b5357859
    123 N0a6a81d07b144856b4b56bc8c5f9a0de
    124 N30557a5a9fdc4a918f4fbd4421114cfc
    125 Ne58acbacbec14f8a98afc8bffb67c259
    126 Nf6b2d551b90740f1a608c8e42013c67a
    127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024236149
    128 https://doi.org/10.1186/1471-2105-8-173
    129 schema:sdDatePublished 2019-04-10T14:08
    130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    131 schema:sdPublisher Nc1b3f67df0084d02bd27b9cf9555a2d5
    132 schema:url http://link.springer.com/10.1186%2F1471-2105-8-173
    133 sgo:license sg:explorer/license/
    134 sgo:sdDataset articles
    135 rdf:type schema:ScholarlyArticle
    136 N0474ff35a44d4e848fdb0444b5357859 schema:name doi
    137 schema:value 10.1186/1471-2105-8-173
    138 rdf:type schema:PropertyValue
    139 N0893c760ddba48deb602a49729b39208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Saccharomyces cerevisiae
    141 rdf:type schema:DefinedTerm
    142 N0a6a81d07b144856b4b56bc8c5f9a0de schema:name readcube_id
    143 schema:value 7376d2e9edc68fdd0c33e24fe685db2d1d569d329f76c12fc9fdb1f34e0b5fc2
    144 rdf:type schema:PropertyValue
    145 N0b445f5144cb43ae8d7fc8a9cc5876e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Structure-Activity Relationship
    147 rdf:type schema:DefinedTerm
    148 N172ee53281d74f3d976a692cefa073f7 rdf:first sg:person.01325035263.95
    149 rdf:rest Ndb39c54df46145beb07469e8e726db65
    150 N2518ba43758649df8c77722d29d9d8a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Sequence Alignment
    152 rdf:type schema:DefinedTerm
    153 N30557a5a9fdc4a918f4fbd4421114cfc schema:name pubmed_id
    154 schema:value 17521444
    155 rdf:type schema:PropertyValue
    156 N43183cf24edd4fb09ef64c42efa09a0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Saccharomyces cerevisiae Proteins
    158 rdf:type schema:DefinedTerm
    159 N511583d915614265ae59586fdaeee990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Computer Simulation
    161 rdf:type schema:DefinedTerm
    162 N5784a13099b641f390bbff65ca5db8ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Phylogeny
    164 rdf:type schema:DefinedTerm
    165 N680b60df092c4d3689ce635ba4e6ee41 schema:volumeNumber 8
    166 rdf:type schema:PublicationVolume
    167 Na2495466481b4caf8ad50dd366ddeaf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Escherichia coli Proteins
    169 rdf:type schema:DefinedTerm
    170 Na4f7d3af55f642b78d971320b676ee01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Escherichia coli
    172 rdf:type schema:DefinedTerm
    173 Nb7aa0a45ba08424981c066eaab66fc45 schema:issueNumber 1
    174 rdf:type schema:PublicationIssue
    175 Nc1b3f67df0084d02bd27b9cf9555a2d5 schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 Ncf4ae3e98fcf4137adfb2398f72ec0f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Signal Transduction
    179 rdf:type schema:DefinedTerm
    180 Nd67774f3e7534285970ddd7a8b3c5052 rdf:first sg:person.01303253115.13
    181 rdf:rest N172ee53281d74f3d976a692cefa073f7
    182 Nd9709dbbb54c461ca1fbcc54eda51128 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Sequence Analysis, DNA
    184 rdf:type schema:DefinedTerm
    185 Nd9fbd15140f54c6e9e0ec4d05dccf3bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Models, Biological
    187 rdf:type schema:DefinedTerm
    188 Ndb39c54df46145beb07469e8e726db65 rdf:first sg:person.01106662166.38
    189 rdf:rest rdf:nil
    190 Ndbd7a00088e24d579308adb207e32071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Linkage Disequilibrium
    192 rdf:type schema:DefinedTerm
    193 Ne58acbacbec14f8a98afc8bffb67c259 schema:name dimensions_id
    194 schema:value pub.1024236149
    195 rdf:type schema:PropertyValue
    196 Nf6b2d551b90740f1a608c8e42013c67a schema:name nlm_unique_id
    197 schema:value 100965194
    198 rdf:type schema:PropertyValue
    199 Nfbf22f80c9724ed1aa1b25511cc11a69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Chromosome Mapping
    201 rdf:type schema:DefinedTerm
    202 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    203 schema:name Biological Sciences
    204 rdf:type schema:DefinedTerm
    205 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    206 schema:name Genetics
    207 rdf:type schema:DefinedTerm
    208 sg:grant.2720312 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-173
    209 rdf:type schema:MonetaryGrant
    210 sg:journal.1023786 schema:issn 1471-2105
    211 schema:name BMC Bioinformatics
    212 rdf:type schema:Periodical
    213 sg:person.01106662166.38 schema:affiliation https://www.grid.ac/institutes/grid.419234.9
    214 schema:familyName Aravind
    215 schema:givenName L
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106662166.38
    217 rdf:type schema:Person
    218 sg:person.01303253115.13 schema:affiliation https://www.grid.ac/institutes/grid.419234.9
    219 schema:familyName Jothi
    220 schema:givenName Raja
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303253115.13
    222 rdf:type schema:Person
    223 sg:person.01325035263.95 schema:affiliation https://www.grid.ac/institutes/grid.419234.9
    224 schema:familyName Przytycka
    225 schema:givenName Teresa M
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325035263.95
    227 rdf:type schema:Person
    228 sg:pub.10.1007/pl00006122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048256009
    229 https://doi.org/10.1007/pl00006122
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
    232 https://doi.org/10.1038/35001009
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/35051615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051051507
    235 https://doi.org/10.1038/35051615
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/415141a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484556
    238 https://doi.org/10.1038/415141a
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/47056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029720868
    241 https://doi.org/10.1038/47056
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nature03239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008948873
    244 https://doi.org/10.1038/nature03239
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nature04209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006733745
    247 https://doi.org/10.1038/nature04209
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nature04670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033456836
    250 https://doi.org/10.1038/nature04670
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nbt1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010718498
    253 https://doi.org/10.1038/nbt1065
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nbt861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022032213
    256 https://doi.org/10.1038/nbt861
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nrg929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041641433
    259 https://doi.org/10.1038/nrg929
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/1471-2105-6-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047635604
    262 https://doi.org/10.1186/1471-2105-6-40
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1186/1471-2105-7-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005168533
    265 https://doi.org/10.1186/1471-2105-7-130
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1186/1471-2105-7-420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039153176
    268 https://doi.org/10.1186/1471-2105-7-420
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1186/1471-2105-7-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012306604
    271 https://doi.org/10.1186/1471-2105-7-80
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/1471-2148-3-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047997844
    274 https://doi.org/10.1186/1471-2148-3-2
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/2004-5-5-r32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064134838
    277 https://doi.org/10.1186/2004-5-5-r32
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1186/gb-2002-3-11-research0060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038801625
    280 https://doi.org/10.1186/gb-2002-3-11-research0060
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1186/gb-2003-4-9-r59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018960517
    283 https://doi.org/10.1186/gb-2003-4-9-r59
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1186/gb-2004-5-5-r35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052229286
    286 https://doi.org/10.1186/gb-2004-5-5-r35
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1186/gb-2004-5-8-r52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050518624
    289 https://doi.org/10.1186/gb-2004-5-8-r52
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1186/gb-2004-5-8-r53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005344681
    292 https://doi.org/10.1186/gb-2004-5-8-r53
    293 rdf:type schema:CreativeWork
    294 https://app.dimensions.ai/details/publication/pub.1074854613 schema:CreativeWork
    295 https://app.dimensions.ai/details/publication/pub.1077282406 schema:CreativeWork
    296 https://doi.org/10.1002/prot.20830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048185111
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1002/prot.21347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009004682
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1006/jmbi.2000.3732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037240003
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1016/j.cell.2005.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008327797
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1016/j.jmb.2004.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017661582
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1016/j.jmb.2005.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019040099
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1016/j.jmb.2006.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022071757
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1016/j.jmb.2006.07.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005009454
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1016/s0022-2836(02)01038-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028157709
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1016/s0022-2836(03)00114-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036437267
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1016/s0960-9822(03)00009-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017180864
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1016/s0968-0004(98)01274-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011500385
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1073/pnas.0402591101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044213014
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1073/pnas.0505147102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020201838
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1073/pnas.061034498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019323411
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1073/pnas.182380799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041283638
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1073/pnas.2136809100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018259834
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1073/pnas.220399497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049047277
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1073/pnas.95.11.5849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031199342
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1073/pnas.96.8.4285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022990732
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1074/jbc.m512864200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024095648
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1089/omi.1.1998.3.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074253329
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1093/bioinformatics/btg187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044533390
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1093/bioinformatics/btg278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000384014
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1093/bioinformatics/bti027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032923386
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1093/bioinformatics/bti1009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041692878
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1093/bioinformatics/bti313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036086546
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1093/bioinformatics/bti532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032726905
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1093/bioinformatics/bti564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019155361
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1093/bioinformatics/bti723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043964210
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1093/bioinformatics/btl286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052255226
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1093/molbev/msi024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037928048
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1093/nar/30.1.306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051920919
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1093/nar/gkg034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036203143
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.1093/nar/gkg109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051303573
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.1093/nar/gkg924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003407382
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.1093/nar/gkh063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017271040
    371 rdf:type schema:CreativeWork
    372 https://doi.org/10.1093/nar/gkh555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034991761
    373 rdf:type schema:CreativeWork
    374 https://doi.org/10.1093/nar/gkh605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034583416
    375 rdf:type schema:CreativeWork
    376 https://doi.org/10.1093/nar/gkh885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045785762
    377 rdf:type schema:CreativeWork
    378 https://doi.org/10.1093/nar/gki030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039503590
    379 rdf:type schema:CreativeWork
    380 https://doi.org/10.1093/nar/gki573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001607980
    381 rdf:type schema:CreativeWork
    382 https://doi.org/10.1093/nar/gkj406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027030029
    383 rdf:type schema:CreativeWork
    384 https://doi.org/10.1093/nar/gkj496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019354074
    385 rdf:type schema:CreativeWork
    386 https://doi.org/10.1093/nar/gkl438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019967912
    387 rdf:type schema:CreativeWork
    388 https://doi.org/10.1093/protein/14.9.609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051084913
    389 rdf:type schema:CreativeWork
    390 https://doi.org/10.1101/gr.1092603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037787590
    391 rdf:type schema:CreativeWork
    392 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
    393 rdf:type schema:CreativeWork
    394 https://doi.org/10.1101/gr.1586704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018586731
    395 rdf:type schema:CreativeWork
    396 https://doi.org/10.1101/gr.1610504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620733
    397 rdf:type schema:CreativeWork
    398 https://doi.org/10.1101/gr.1969504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040145823
    399 rdf:type schema:CreativeWork
    400 https://doi.org/10.1101/gr.1993504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011310104
    401 rdf:type schema:CreativeWork
    402 https://doi.org/10.1101/gr.209402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022503148
    403 rdf:type schema:CreativeWork
    404 https://doi.org/10.1101/gr.2433104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052316981
    405 rdf:type schema:CreativeWork
    406 https://doi.org/10.1101/gr.246903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022772999
    407 rdf:type schema:CreativeWork
    408 https://doi.org/10.1101/gr.2700304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035879618
    409 rdf:type schema:CreativeWork
    410 https://doi.org/10.1101/gr.3069205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049120726
    411 rdf:type schema:CreativeWork
    412 https://doi.org/10.1101/gr.4336406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048796063
    413 rdf:type schema:CreativeWork
    414 https://doi.org/10.1101/gr.678303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006204615
    415 rdf:type schema:CreativeWork
    416 https://doi.org/10.1104/pp.104.043687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028535448
    417 rdf:type schema:CreativeWork
    418 https://doi.org/10.1111/j.1742-4658.2005.04946.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045561266
    419 rdf:type schema:CreativeWork
    420 https://doi.org/10.1126/science.1090289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029676590
    421 rdf:type schema:CreativeWork
    422 https://doi.org/10.1126/science.1099511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449759
    423 rdf:type schema:CreativeWork
    424 https://doi.org/10.1126/science.1103330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451051
    425 rdf:type schema:CreativeWork
    426 https://doi.org/10.1126/science.278.5338.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039646901
    427 rdf:type schema:CreativeWork
    428 https://doi.org/10.1126/science.285.5428.751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013411081
    429 rdf:type schema:CreativeWork
    430 https://doi.org/10.1128/iai.74.2.1233-1242.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006824315
    431 rdf:type schema:CreativeWork
    432 https://doi.org/10.1371/journal.pcbi.0010003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027276300
    433 rdf:type schema:CreativeWork
    434 https://doi.org/10.1371/journal.pgen.0010065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005199987
    435 rdf:type schema:CreativeWork
    436 https://www.grid.ac/institutes/grid.419234.9 schema:alternateName National Center for Biotechnology Information
    437 schema:name National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA
    438 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...