Pre-processing Agilent microarray data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Marianna Zahurak, Giovanni Parmigiani, Wayne Yu, Robert B Scharpf, David Berman, Edward Schaeffer, Shabana Shabbeer, Leslie Cope

ABSTRACT

BACKGROUND: Pre-processing methods for two-sample long oligonucleotide arrays, specifically the Agilent technology, have not been extensively studied. The goal of this study is to quantify some of the sources of error that affect measurement of expression using Agilent arrays and to compare Agilent's Feature Extraction software with pre-processing methods that have become the standard for normalization of cDNA arrays. These include log transformation followed by loess normalization with or without background subtraction and often a between array scale normalization procedure. The larger goal is to define best study design and pre-processing practices for Agilent arrays, and we offer some suggestions. RESULTS: Simple loess normalization without background subtraction produced the lowest variability. However, without background subtraction, fold changes were biased towards zero, particularly at low intensities. ROC analysis of a spike-in experiment showed that differentially expressed genes are most reliably detected when background is not subtracted. Loess normalization and no background subtraction yielded an AUC of 99.7% compared with 88.8% for Agilent processed fold changes. All methods performed well when error was taken into account by t- or z-statistics, AUCs > or = 99.8%. A substantial proportion of genes showed dye effects, 43% (99% CI: 39%, 47%). However, these effects were generally small regardless of the pre-processing method. CONCLUSION: Simple loess normalization without background subtraction resulted in low variance fold changes that more reliably ranked gene expression than the other methods. While t-statistics and other measures that take variation into account, including Agilent's z-statistic, can also be used to reliably select differentially expressed genes, fold changes are a standard measure of differential expression for exploratory work, cross platform comparison, and biological interpretation and can not be entirely replaced. Although dye effects are small for most genes, many array features are affected. Therefore, an experimental design that incorporates dye swaps or a common reference could be valuable. More... »

PAGES

142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-142

DOI

http://dx.doi.org/10.1186/1471-2105-8-142

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023588367

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17472750


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dogs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Oncology Biostatistics, Johns Hopkins University School of Medicine, 550 N. Broadway, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zahurak", 
        "givenName": "Marianna", 
        "id": "sg:person.07667030157.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667030157.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Oncology Biostatistics, Johns Hopkins University School of Medicine, 550 N. Broadway, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parmigiani", 
        "givenName": "Giovanni", 
        "id": "sg:person.01213127733.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213127733.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Johns Hopkins School of Medicine, 21231, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wayne", 
        "id": "sg:person.0774443547.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774443547.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Room E3034, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scharpf", 
        "givenName": "Robert B", 
        "id": "sg:person.0721767573.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721767573.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Johns Hopkins University School of Medicine, 1550 Orleans St., CRB II Room 5.45, 21231, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berman", 
        "givenName": "David", 
        "id": "sg:person.01070373002.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070373002.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Johns Hopkins University School of Medicine, 600 N. Wolfe St., Marburg 145, 21287, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaeffer", 
        "givenName": "Edward", 
        "id": "sg:person.0643366272.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643366272.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Johns Hopkins University School of Medicine, 1650 Orleans St., CRB I, 21231, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shabbeer", 
        "givenName": "Shabana", 
        "id": "sg:person.01207452511.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207452511.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Oncology Biostatistics, Johns Hopkins University School of Medicine, 550 N. Broadway, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cope", 
        "givenName": "Leslie", 
        "id": "sg:person.01100302433.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100302433.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000162729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(04)00083-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002991539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930818", 
          "https://doi.org/10.1038/ng1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930818", 
          "https://doi.org/10.1038/ng1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012399158", 
          "https://doi.org/10.1038/nmeth754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012399158", 
          "https://doi.org/10.1038/nmeth754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013525076", 
          "https://doi.org/10.1007/0-387-29362-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxl041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017209415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018638362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024595769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024754245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432622", 
          "https://doi.org/10.1007/0-387-29362-0_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-21679-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027143057", 
          "https://doi.org/10.1007/0-387-21679-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-2-r16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028489174", 
          "https://doi.org/10.1186/gb-2005-6-2-r16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-3-401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034155109", 
          "https://doi.org/10.1186/gb-2006-7-3-401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034248541", 
          "https://doi.org/10.1038/nbt1237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034248541", 
          "https://doi.org/10.1038/nbt1237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-1-r2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036470625", 
          "https://doi.org/10.1186/gb-2007-8-1-r2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037199672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/4.2.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037543114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038360431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(03)00155-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042013441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(03)00155-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042013441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(03)00155-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042013441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.12.2549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048626178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.427980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051136724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.6694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064741895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075274574", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0038-1633893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077005675"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Pre-processing methods for two-sample long oligonucleotide arrays, specifically the Agilent technology, have not been extensively studied. The goal of this study is to quantify some of the sources of error that affect measurement of expression using Agilent arrays and to compare Agilent's Feature Extraction software with pre-processing methods that have become the standard for normalization of cDNA arrays. These include log transformation followed by loess normalization with or without background subtraction and often a between array scale normalization procedure. The larger goal is to define best study design and pre-processing practices for Agilent arrays, and we offer some suggestions.\nRESULTS: Simple loess normalization without background subtraction produced the lowest variability. However, without background subtraction, fold changes were biased towards zero, particularly at low intensities. ROC analysis of a spike-in experiment showed that differentially expressed genes are most reliably detected when background is not subtracted. Loess normalization and no background subtraction yielded an AUC of 99.7% compared with 88.8% for Agilent processed fold changes. All methods performed well when error was taken into account by t- or z-statistics, AUCs > or = 99.8%. A substantial proportion of genes showed dye effects, 43% (99% CI: 39%, 47%). However, these effects were generally small regardless of the pre-processing method.\nCONCLUSION: Simple loess normalization without background subtraction resulted in low variance fold changes that more reliably ranked gene expression than the other methods. While t-statistics and other measures that take variation into account, including Agilent's z-statistic, can also be used to reliably select differentially expressed genes, fold changes are a standard measure of differential expression for exploratory work, cross platform comparison, and biological interpretation and can not be entirely replaced. Although dye effects are small for most genes, many array features are affected. Therefore, an experimental design that incorporates dye swaps or a common reference could be valuable.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-142", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438791", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2539137", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Pre-processing Agilent microarray data", 
    "pagination": "142", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "70618bec2587ce2292f462e482dec85f83addd5f3aae878dae9a9dca0fbedb74"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17472750"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-142"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023588367"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-142", 
      "https://app.dimensions.ai/details/publication/pub.1023588367"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-8-142"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-142'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-142'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-142'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-142'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      62 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-142 schema:about N07093bfd16ca48898f2ebf650ee28280
2 N1dc581238bec4c7c8248abcb5c338649
3 N2b6993f840c84a96a552e8eea7c9e379
4 N9062f0719ced4719aa590142e572489c
5 Na7efa26e7bab4571940dc4720aca9972
6 Na86ae3ecc0704e768bfbd326479bf9a6
7 Nc22008e8a9154de4b727fd2ca659df30
8 Nca5073834bfd49e3bb298c0cc2f3c86e
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author Nf97d71d0ad2c4ac8b11630b044382561
12 schema:citation sg:pub.10.1007/0-387-21679-0_3
13 sg:pub.10.1007/0-387-29362-0_23
14 sg:pub.10.1007/0-387-29362-0_4
15 sg:pub.10.1038/nbt1237
16 sg:pub.10.1038/ng1032
17 sg:pub.10.1038/nmeth754
18 sg:pub.10.1186/gb-2005-6-2-r16
19 sg:pub.10.1186/gb-2006-7-3-401
20 sg:pub.10.1186/gb-2007-8-1-r2
21 https://app.dimensions.ai/details/publication/pub.1075274574
22 https://doi.org/10.1016/s0014-5793(04)00083-3
23 https://doi.org/10.1016/s1046-2023(03)00155-5
24 https://doi.org/10.1055/s-0038-1633893
25 https://doi.org/10.1093/bioinformatics/btg076
26 https://doi.org/10.1093/bioinformatics/btg410
27 https://doi.org/10.1093/bioinformatics/bti302
28 https://doi.org/10.1093/bioinformatics/bti378
29 https://doi.org/10.1093/biostatistics/4.2.249
30 https://doi.org/10.1093/biostatistics/kxl041
31 https://doi.org/10.1093/nar/29.12.2549
32 https://doi.org/10.1093/nar/30.4.e15
33 https://doi.org/10.1093/nar/gkh866
34 https://doi.org/10.1093/nar/gng015
35 https://doi.org/10.1117/12.427980
36 https://doi.org/10.1289/ehp.6694
37 schema:datePublished 2007-12
38 schema:datePublishedReg 2007-12-01
39 schema:description BACKGROUND: Pre-processing methods for two-sample long oligonucleotide arrays, specifically the Agilent technology, have not been extensively studied. The goal of this study is to quantify some of the sources of error that affect measurement of expression using Agilent arrays and to compare Agilent's Feature Extraction software with pre-processing methods that have become the standard for normalization of cDNA arrays. These include log transformation followed by loess normalization with or without background subtraction and often a between array scale normalization procedure. The larger goal is to define best study design and pre-processing practices for Agilent arrays, and we offer some suggestions. RESULTS: Simple loess normalization without background subtraction produced the lowest variability. However, without background subtraction, fold changes were biased towards zero, particularly at low intensities. ROC analysis of a spike-in experiment showed that differentially expressed genes are most reliably detected when background is not subtracted. Loess normalization and no background subtraction yielded an AUC of 99.7% compared with 88.8% for Agilent processed fold changes. All methods performed well when error was taken into account by t- or z-statistics, AUCs > or = 99.8%. A substantial proportion of genes showed dye effects, 43% (99% CI: 39%, 47%). However, these effects were generally small regardless of the pre-processing method. CONCLUSION: Simple loess normalization without background subtraction resulted in low variance fold changes that more reliably ranked gene expression than the other methods. While t-statistics and other measures that take variation into account, including Agilent's z-statistic, can also be used to reliably select differentially expressed genes, fold changes are a standard measure of differential expression for exploratory work, cross platform comparison, and biological interpretation and can not be entirely replaced. Although dye effects are small for most genes, many array features are affected. Therefore, an experimental design that incorporates dye swaps or a common reference could be valuable.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N1ba77fca18364d639774d6367f4ddbb0
44 N5e08195b72714461992bb24296a2c5da
45 sg:journal.1023786
46 schema:name Pre-processing Agilent microarray data
47 schema:pagination 142
48 schema:productId N9642f99ef4f844b58ab7199089ec786e
49 Na2cf359426974300a4a337be519cd82b
50 Nccbd20b90c0a4dd382268d8b536a3abb
51 Ne74570ed91b94df8965e7242121cecbe
52 Nf3a70995d02844d3977198e0244d3f77
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023588367
54 https://doi.org/10.1186/1471-2105-8-142
55 schema:sdDatePublished 2019-04-10T13:14
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nafcd8b931f3f4c628f188577dae96aba
58 schema:url http://link.springer.com/10.1186%2F1471-2105-8-142
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N07093bfd16ca48898f2ebf650ee28280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Dogs
64 rdf:type schema:DefinedTerm
65 N1ba77fca18364d639774d6367f4ddbb0 schema:volumeNumber 8
66 rdf:type schema:PublicationVolume
67 N1dc581238bec4c7c8248abcb5c338649 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Databases, Genetic
69 rdf:type schema:DefinedTerm
70 N218192ddc5a446cf909536947eb4442c rdf:first sg:person.01070373002.63
71 rdf:rest Nb7ea1093d0be40dba6594795cc312452
72 N288a4af1adc24882b23bf2b81a8b4c58 rdf:first sg:person.0774443547.31
73 rdf:rest Nfe691ceef9c74c769b864b33398dfddd
74 N2b6993f840c84a96a552e8eea7c9e379 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Gene Expression Profiling
76 rdf:type schema:DefinedTerm
77 N5e08195b72714461992bb24296a2c5da schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N9062f0719ced4719aa590142e572489c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Oligonucleotide Array Sequence Analysis
81 rdf:type schema:DefinedTerm
82 N9642f99ef4f844b58ab7199089ec786e schema:name doi
83 schema:value 10.1186/1471-2105-8-142
84 rdf:type schema:PropertyValue
85 Na2cf359426974300a4a337be519cd82b schema:name dimensions_id
86 schema:value pub.1023588367
87 rdf:type schema:PropertyValue
88 Na7efa26e7bab4571940dc4720aca9972 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Mice
90 rdf:type schema:DefinedTerm
91 Na86ae3ecc0704e768bfbd326479bf9a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Cell Line, Tumor
93 rdf:type schema:DefinedTerm
94 Nafcd8b931f3f4c628f188577dae96aba schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nb7ea1093d0be40dba6594795cc312452 rdf:first sg:person.0643366272.40
97 rdf:rest Nd3023b2a42a4465a90151a530598b9c2
98 Nc22008e8a9154de4b727fd2ca659df30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Humans
100 rdf:type schema:DefinedTerm
101 Nca5073834bfd49e3bb298c0cc2f3c86e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Animals
103 rdf:type schema:DefinedTerm
104 Ncc3f8b9399b8439cb3aa0416f9eaf321 rdf:first sg:person.01213127733.91
105 rdf:rest N288a4af1adc24882b23bf2b81a8b4c58
106 Nccbd20b90c0a4dd382268d8b536a3abb schema:name pubmed_id
107 schema:value 17472750
108 rdf:type schema:PropertyValue
109 Nd3023b2a42a4465a90151a530598b9c2 rdf:first sg:person.01207452511.46
110 rdf:rest Nec6718d61a194a54badd6a1187a24357
111 Ne74570ed91b94df8965e7242121cecbe schema:name readcube_id
112 schema:value 70618bec2587ce2292f462e482dec85f83addd5f3aae878dae9a9dca0fbedb74
113 rdf:type schema:PropertyValue
114 Nec6718d61a194a54badd6a1187a24357 rdf:first sg:person.01100302433.27
115 rdf:rest rdf:nil
116 Nf3a70995d02844d3977198e0244d3f77 schema:name nlm_unique_id
117 schema:value 100965194
118 rdf:type schema:PropertyValue
119 Nf97d71d0ad2c4ac8b11630b044382561 rdf:first sg:person.07667030157.06
120 rdf:rest Ncc3f8b9399b8439cb3aa0416f9eaf321
121 Nfe691ceef9c74c769b864b33398dfddd rdf:first sg:person.0721767573.97
122 rdf:rest N218192ddc5a446cf909536947eb4442c
123 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical and Health Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
127 schema:name Clinical Sciences
128 rdf:type schema:DefinedTerm
129 sg:grant.2438791 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-142
130 rdf:type schema:MonetaryGrant
131 sg:grant.2539137 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-142
132 rdf:type schema:MonetaryGrant
133 sg:journal.1023786 schema:issn 1471-2105
134 schema:name BMC Bioinformatics
135 rdf:type schema:Periodical
136 sg:person.01070373002.63 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
137 schema:familyName Berman
138 schema:givenName David
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070373002.63
140 rdf:type schema:Person
141 sg:person.01100302433.27 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
142 schema:familyName Cope
143 schema:givenName Leslie
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100302433.27
145 rdf:type schema:Person
146 sg:person.01207452511.46 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
147 schema:familyName Shabbeer
148 schema:givenName Shabana
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207452511.46
150 rdf:type schema:Person
151 sg:person.01213127733.91 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
152 schema:familyName Parmigiani
153 schema:givenName Giovanni
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213127733.91
155 rdf:type schema:Person
156 sg:person.0643366272.40 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
157 schema:familyName Schaeffer
158 schema:givenName Edward
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643366272.40
160 rdf:type schema:Person
161 sg:person.0721767573.97 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
162 schema:familyName Scharpf
163 schema:givenName Robert B
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721767573.97
165 rdf:type schema:Person
166 sg:person.07667030157.06 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
167 schema:familyName Zahurak
168 schema:givenName Marianna
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667030157.06
170 rdf:type schema:Person
171 sg:person.0774443547.31 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
172 schema:familyName Yu
173 schema:givenName Wayne
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774443547.31
175 rdf:type schema:Person
176 sg:pub.10.1007/0-387-21679-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027143057
177 https://doi.org/10.1007/0-387-21679-0_3
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/0-387-29362-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
180 https://doi.org/10.1007/0-387-29362-0_23
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/0-387-29362-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013525076
183 https://doi.org/10.1007/0-387-29362-0_4
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nbt1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034248541
186 https://doi.org/10.1038/nbt1237
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ng1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006930818
189 https://doi.org/10.1038/ng1032
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nmeth754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012399158
192 https://doi.org/10.1038/nmeth754
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/gb-2005-6-2-r16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028489174
195 https://doi.org/10.1186/gb-2005-6-2-r16
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/gb-2006-7-3-401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034155109
198 https://doi.org/10.1186/gb-2006-7-3-401
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/gb-2007-8-1-r2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036470625
201 https://doi.org/10.1186/gb-2007-8-1-r2
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1075274574 schema:CreativeWork
204 https://doi.org/10.1016/s0014-5793(04)00083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002991539
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s1046-2023(03)00155-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042013441
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1055/s-0038-1633893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077005675
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bioinformatics/btg076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000162729
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/btg410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024595769
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/bioinformatics/bti302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024754245
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/bti378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038360431
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/biostatistics/4.2.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543114
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/biostatistics/kxl041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017209415
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/nar/29.12.2549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048626178
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gkh866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037199672
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/nar/gng015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018638362
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1117/12.427980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051136724
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1289/ehp.6694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064741895
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
235 schema:name Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Room E3034, 21205, Baltimore, MD, USA
236 Johns Hopkins School of Medicine, 21231, Baltimore, MD, USA
237 Johns Hopkins University School of Medicine, 1550 Orleans St., CRB II Room 5.45, 21231, Baltimore, MD, USA
238 Johns Hopkins University School of Medicine, 1650 Orleans St., CRB I, 21231, Baltimore, MD, USA
239 Johns Hopkins University School of Medicine, 600 N. Wolfe St., Marburg 145, 21287, Baltimore, MD, USA
240 Oncology Biostatistics, Johns Hopkins University School of Medicine, 550 N. Broadway, 21205, Baltimore, MD, USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...