Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Arif Ozgun Harmanci, Gaurav Sharma, David H Mathews

ABSTRACT

BACKGROUND: Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. RESULTS: The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. CONCLUSION: Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download. More... »

PAGES

130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-8-130

DOI

http://dx.doi.org/10.1186/1471-2105-8-130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044824773

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17445273


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rochester", 
          "id": "https://www.grid.ac/institutes/grid.16416.34", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Rochester, Hopeman 204, RC Box 270126, 14627, Rochester, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harmanci", 
        "givenName": "Arif Ozgun", 
        "id": "sg:person.0713270321.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713270321.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rochester Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412750.5", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Rochester, Hopeman 204, RC Box 270126, 14627, Rochester, NY, USA", 
            "Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 630, 14642, Rochester, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Gaurav", 
        "id": "sg:person.014416425040.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416425040.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rochester Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412750.5", 
          "name": [
            "Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 630, 14642, Rochester, NY, USA", 
            "Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, 14642, Rochester, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathews", 
        "givenName": "David H", 
        "id": "sg:person.01050257021.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050257021.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35103511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000346912", 
          "https://doi.org/10.1038/35103511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35103511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000346912", 
          "https://doi.org/10.1038/35103511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2006.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007345576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000180050042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007455693", 
          "https://doi.org/10.1007/s000180050042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5226606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008334026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-440x(02)00339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010005746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010914847", 
          "https://doi.org/10.1186/1471-2105-7-400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(74)90560-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012606399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.4.991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013744860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016135999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409169102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016701541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017511013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2001.930952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019371143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019869086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.3001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020704695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(89)80106-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021760980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022575813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/26.1.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023830553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025101661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0401799101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026962739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031393353", 
          "https://doi.org/10.1186/1471-2105-5-105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.18.3724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032298574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.2700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034604829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034691587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040557822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040713999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041215737", 
          "https://doi.org/10.1186/1471-2105-5-71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041215737", 
          "https://doi.org/10.1186/1471-2105-5-71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2006.01.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042366113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-2-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046362248", 
          "https://doi.org/10.1186/1471-2105-2-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046646423", 
          "https://doi.org/10.1186/1471-2105-7-173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048566346", 
          "https://doi.org/10.1186/1471-2105-6-73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049080873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.7650904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052015791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00052a021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055158916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi9809425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055215996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi9809425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055215996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.748992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.18626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/massp.1986.1165342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061385404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1974.1055186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0145048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbra.2005.007581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067439218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075024888", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083028449", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icc.1993.397441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086283815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2007.366692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095524579"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction.\nRESULTS: The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources.\nCONCLUSION: Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-8-130", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2519035", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign", 
    "pagination": "130", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d583d1393c9b3188c276d34535831f489933ee8830356434fef9ba191bf8af1a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17445273"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-8-130"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044824773"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-8-130", 
      "https://app.dimensions.ai/details/publication/pub.1044824773"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54310_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-8-130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-8-130'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      81 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-8-130 schema:about N27b01765138f4e889587c5ca27cbc04a
2 N399e5e9185b54cc2bdd8c52c1a2e985f
3 N4034f833fc7240b5bca088997754e16b
4 Na836923bec6e439882780de925c1ddd3
5 Nc71570373a6b431c9763f5ffb62237ee
6 Nf046f2d956b048db96c24f3faba99fa1
7 anzsrc-for:08
8 anzsrc-for:0802
9 schema:author N0f8a1753dc7e477db9142e00bd9eab3c
10 schema:citation sg:pub.10.1007/s000180050042
11 sg:pub.10.1038/35103511
12 sg:pub.10.1186/1471-2105-2-8
13 sg:pub.10.1186/1471-2105-5-105
14 sg:pub.10.1186/1471-2105-5-71
15 sg:pub.10.1186/1471-2105-6-73
16 sg:pub.10.1186/1471-2105-7-173
17 sg:pub.10.1186/1471-2105-7-400
18 https://app.dimensions.ai/details/publication/pub.1075024888
19 https://app.dimensions.ai/details/publication/pub.1083028449
20 https://doi.org/10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g
21 https://doi.org/10.1006/jmbi.1999.2700
22 https://doi.org/10.1006/jmbi.1999.3001
23 https://doi.org/10.1006/jmbi.2000.4042
24 https://doi.org/10.1006/jmbi.2001.5351
25 https://doi.org/10.1016/0022-2836(74)90560-9
26 https://doi.org/10.1016/0076-6879(89)80106-5
27 https://doi.org/10.1016/j.jmb.2006.01.067
28 https://doi.org/10.1016/j.sbi.2006.05.010
29 https://doi.org/10.1016/s0959-440x(02)00339-1
30 https://doi.org/10.1021/bi00052a021
31 https://doi.org/10.1021/bi9809425
32 https://doi.org/10.1073/pnas.0401799101
33 https://doi.org/10.1073/pnas.0409169102
34 https://doi.org/10.1093/bioinformatics/bth229
35 https://doi.org/10.1093/bioinformatics/bti279
36 https://doi.org/10.1093/bioinformatics/bti349
37 https://doi.org/10.1093/nar/25.18.3724
38 https://doi.org/10.1093/nar/26.1.148
39 https://doi.org/10.1093/nar/28.1.166
40 https://doi.org/10.1093/nar/28.4.991
41 https://doi.org/10.1093/nar/gkg006
42 https://doi.org/10.1093/nar/gkg599
43 https://doi.org/10.1093/nar/gkg938
44 https://doi.org/10.1093/nar/gkl472
45 https://doi.org/10.1101/gr.5226606
46 https://doi.org/10.1109/18.748992
47 https://doi.org/10.1109/5.18626
48 https://doi.org/10.1109/icassp.2007.366692
49 https://doi.org/10.1109/icc.1993.397441
50 https://doi.org/10.1109/massp.1986.1165342
51 https://doi.org/10.1109/tit.1974.1055186
52 https://doi.org/10.1109/tit.2001.930952
53 https://doi.org/10.1137/0145048
54 https://doi.org/10.1261/rna.7650904
55 https://doi.org/10.1504/ijbra.2005.007581
56 schema:datePublished 2007-12
57 schema:datePublishedReg 2007-12-01
58 schema:description BACKGROUND: Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. RESULTS: The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. CONCLUSION: Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N49a5e3e927174a3e8a5ad76a2a68c49a
63 Nb734ce38c30e45d9bcca879025bfa155
64 sg:journal.1023786
65 schema:name Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign
66 schema:pagination 130
67 schema:productId N06877afb53a3465884c777b0aada0ca4
68 Nb325571a5f7a40989fc36d53d71e8687
69 Nbffb01f0a09d41a690f06c65fc6bcece
70 Ndfb82f708f5f4e0b8cc57673173b7567
71 Nfd69348f3d4f4f88891eb298960a3257
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824773
73 https://doi.org/10.1186/1471-2105-8-130
74 schema:sdDatePublished 2019-04-11T10:17
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N910af0ad2ba947b29201d61dbc97cab8
77 schema:url https://link.springer.com/10.1186%2F1471-2105-8-130
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N06877afb53a3465884c777b0aada0ca4 schema:name doi
82 schema:value 10.1186/1471-2105-8-130
83 rdf:type schema:PropertyValue
84 N0f8a1753dc7e477db9142e00bd9eab3c rdf:first sg:person.0713270321.18
85 rdf:rest Ne5f84767851041aa9ad7fd664b1e67d4
86 N27b01765138f4e889587c5ca27cbc04a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Sequence Analysis, RNA
88 rdf:type schema:DefinedTerm
89 N399e5e9185b54cc2bdd8c52c1a2e985f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Software
91 rdf:type schema:DefinedTerm
92 N4034f833fc7240b5bca088997754e16b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Models, Statistical
94 rdf:type schema:DefinedTerm
95 N49a5e3e927174a3e8a5ad76a2a68c49a schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N910af0ad2ba947b29201d61dbc97cab8 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Na836923bec6e439882780de925c1ddd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name RNA
101 rdf:type schema:DefinedTerm
102 Nb325571a5f7a40989fc36d53d71e8687 schema:name readcube_id
103 schema:value d583d1393c9b3188c276d34535831f489933ee8830356434fef9ba191bf8af1a
104 rdf:type schema:PropertyValue
105 Nb734ce38c30e45d9bcca879025bfa155 schema:volumeNumber 8
106 rdf:type schema:PublicationVolume
107 Nbffb01f0a09d41a690f06c65fc6bcece schema:name dimensions_id
108 schema:value pub.1044824773
109 rdf:type schema:PropertyValue
110 Nc71570373a6b431c9763f5ffb62237ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Sequence Alignment
112 rdf:type schema:DefinedTerm
113 Ndfb82f708f5f4e0b8cc57673173b7567 schema:name pubmed_id
114 schema:value 17445273
115 rdf:type schema:PropertyValue
116 Ne5f84767851041aa9ad7fd664b1e67d4 rdf:first sg:person.014416425040.13
117 rdf:rest Nef09b3b5d952465ba617bf28d1a66053
118 Nef09b3b5d952465ba617bf28d1a66053 rdf:first sg:person.01050257021.75
119 rdf:rest rdf:nil
120 Nf046f2d956b048db96c24f3faba99fa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Predictive Value of Tests
122 rdf:type schema:DefinedTerm
123 Nfd69348f3d4f4f88891eb298960a3257 schema:name nlm_unique_id
124 schema:value 100965194
125 rdf:type schema:PropertyValue
126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information and Computing Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
130 schema:name Computation Theory and Mathematics
131 rdf:type schema:DefinedTerm
132 sg:grant.2519035 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-8-130
133 rdf:type schema:MonetaryGrant
134 sg:journal.1023786 schema:issn 1471-2105
135 schema:name BMC Bioinformatics
136 rdf:type schema:Periodical
137 sg:person.01050257021.75 schema:affiliation https://www.grid.ac/institutes/grid.412750.5
138 schema:familyName Mathews
139 schema:givenName David H
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050257021.75
141 rdf:type schema:Person
142 sg:person.014416425040.13 schema:affiliation https://www.grid.ac/institutes/grid.412750.5
143 schema:familyName Sharma
144 schema:givenName Gaurav
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416425040.13
146 rdf:type schema:Person
147 sg:person.0713270321.18 schema:affiliation https://www.grid.ac/institutes/grid.16416.34
148 schema:familyName Harmanci
149 schema:givenName Arif Ozgun
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713270321.18
151 rdf:type schema:Person
152 sg:pub.10.1007/s000180050042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007455693
153 https://doi.org/10.1007/s000180050042
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/35103511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000346912
156 https://doi.org/10.1038/35103511
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/1471-2105-2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046362248
159 https://doi.org/10.1186/1471-2105-2-8
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2105-5-105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031393353
162 https://doi.org/10.1186/1471-2105-5-105
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/1471-2105-5-71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041215737
165 https://doi.org/10.1186/1471-2105-5-71
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/1471-2105-6-73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048566346
168 https://doi.org/10.1186/1471-2105-6-73
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1471-2105-7-173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046646423
171 https://doi.org/10.1186/1471-2105-7-173
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2105-7-400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010914847
174 https://doi.org/10.1186/1471-2105-7-400
175 rdf:type schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1075024888 schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1083028449 schema:CreativeWork
178 https://doi.org/10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1025101661
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1006/jmbi.1999.2700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034604829
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1006/jmbi.1999.3001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020704695
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1006/jmbi.2000.4042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022575813
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1006/jmbi.2001.5351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040713999
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0022-2836(74)90560-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012606399
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/0076-6879(89)80106-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021760980
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jmb.2006.01.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042366113
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.sbi.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869749
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0959-440x(02)00339-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010005746
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/bi00052a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055158916
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/bi9809425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055215996
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1073/pnas.0401799101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026962739
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1073/pnas.0409169102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016701541
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/bioinformatics/bth229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040557822
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/bti279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065418
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bioinformatics/bti349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034691587
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/25.18.3724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032298574
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/nar/26.1.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023830553
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/nar/28.1.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019869086
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/nar/28.4.991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013744860
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/nar/gkg006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016135999
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/nar/gkg599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017511013
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gkg938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007345576
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gkl472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049080873
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1101/gr.5226606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008334026
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/18.748992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100868
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/icassp.2007.366692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095524579
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/icc.1993.397441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086283815
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/massp.1986.1165342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385404
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/tit.1974.1055186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647429
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/tit.2001.930952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019371143
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1137/0145048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840393
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1261/rna.7650904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052015791
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1504/ijbra.2005.007581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067439218
249 rdf:type schema:CreativeWork
250 https://www.grid.ac/institutes/grid.16416.34 schema:alternateName University of Rochester
251 schema:name Department of Electrical and Computer Engineering, University of Rochester, Hopeman 204, RC Box 270126, 14627, Rochester, NY, USA
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.412750.5 schema:alternateName University of Rochester Medical Center
254 schema:name Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, 14642, Rochester, NY, USA
255 Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 630, 14642, Rochester, NY, USA
256 Department of Electrical and Computer Engineering, University of Rochester, Hopeman 204, RC Box 270126, 14627, Rochester, NY, USA
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...