Choosing negative examples for the prediction of protein-protein interactions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-03

AUTHORS

Asa Ben-Hur, William Stafford Noble

ABSTRACT

The protein-protein interaction networks of even well-studied model organisms are sketchy at best, highlighting the continued need for computational methods to help direct experimentalists in the search for novel interactions. This need has prompted the development of a number of methods for predicting protein-protein interactions based on various sources of data and methodologies. The common method for choosing negative examples for training a predictor of protein-protein interactions is based on annotations of cellular localization, and the observation that pairs of proteins that have different localization patterns are unlikely to interact. While this method leads to high quality sets of non-interacting proteins, we find that this choice can lead to biased estimates of prediction accuracy, because the constraints placed on the distribution of the negative examples makes the task easier. The effects of this bias are demonstrated in the context of both sequence-based and non-sequence based features used for predicting protein-protein interactions. More... »

PAGES

s2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-s1-s2

DOI

http://dx.doi.org/10.1186/1471-2105-7-s1-s2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038206691

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16723005


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Folding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Computer Science, Colorado State University, Fort Collins, CO, USA", 
            "Department of Computer Science, University of Colorado, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben-Hur", 
        "givenName": "Asa", 
        "id": "sg:person.01242755504.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, WA, USA", 
            "Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noble", 
        "givenName": "William Stafford", 
        "id": "sg:person.01334532172.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334532172.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1074/mcp.m100037-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000521469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002506753", 
          "https://doi.org/10.1186/1471-2105-5-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007007211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007650574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009009357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5428.751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013411081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013915575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014463760", 
          "https://doi.org/10.1186/1471-2105-5-154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014503362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017837373", 
          "https://doi.org/10.1038/nature750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017837373", 
          "https://doi.org/10.1038/nature750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020293550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020884192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026276784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00239-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030571302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00239-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030571302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.153002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031289896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031366016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2004.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032188145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.102102699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034359388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/130385.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00114-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036437267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039614576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.11.12.4241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048274369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1087361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048921070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049200636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti1016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050590164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075024926", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077020040", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812702456_0050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096063152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812799623_0053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096080294"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03", 
    "datePublishedReg": "2006-03-01", 
    "description": "The protein-protein interaction networks of even well-studied model organisms are sketchy at best, highlighting the continued need for computational methods to help direct experimentalists in the search for novel interactions. This need has prompted the development of a number of methods for predicting protein-protein interactions based on various sources of data and methodologies. The common method for choosing negative examples for training a predictor of protein-protein interactions is based on annotations of cellular localization, and the observation that pairs of proteins that have different localization patterns are unlikely to interact. While this method leads to high quality sets of non-interacting proteins, we find that this choice can lead to biased estimates of prediction accuracy, because the constraints placed on the distribution of the negative examples makes the task easier. The effects of this bias are demonstrated in the context of both sequence-based and non-sequence based features used for predicting protein-protein interactions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-s1-s2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439911", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3034927", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2632019", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Choosing negative examples for the prediction of protein-protein interactions", 
    "pagination": "s2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b60135c4ea0994ca7295ec8e428360620f1738a2eabe26d61baf5d3909f83964"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16723005"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-s1-s2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038206691"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-s1-s2", 
      "https://app.dimensions.ai/details/publication/pub.1038206691"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-7-S1-S2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-s1-s2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-s1-s2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-s1-s2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-s1-s2'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      73 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-s1-s2 schema:about N17aa22f0009a416a8a2ea376d57e18c8
2 N331b1b8397fc49adabefe985fa40d944
3 N3f71458e7d2d4edb9385de630906b478
4 N457c41b6e8ab46368f62c715a5931466
5 N68c0ca497e83436481b6dc9126cfec75
6 N7a8c14c064c24cb290129c2feffad18c
7 N841313e5568842508c12d40e27c9ee8c
8 N88b0d12cc2ce416b8071558db50c8319
9 N9a1b1a9a2ca34211926aaa5fb7983aff
10 Nb59ef81b156049c9958ba6e9ef25c9f3
11 Nbb1195cce54b473fb53f2bbbc143c847
12 Ne16bd968a1ff4087a4a94b42fe5099d3
13 Ne8612789e9984c50b770c706d68c3985
14 Nfcf0bdbbbddf49f7b144cddcf8915775
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author N7f5b4e0652e14495ab0b72a4a6a36649
18 schema:citation sg:pub.10.1038/75556
19 sg:pub.10.1038/nature750
20 sg:pub.10.1186/1471-2105-5-154
21 sg:pub.10.1186/1471-2105-5-38
22 https://app.dimensions.ai/details/publication/pub.1075024926
23 https://app.dimensions.ai/details/publication/pub.1077020040
24 https://doi.org/10.1002/prot.10074
25 https://doi.org/10.1006/jmbi.2001.4920
26 https://doi.org/10.1016/j.mib.2004.08.012
27 https://doi.org/10.1016/s0022-2836(03)00114-1
28 https://doi.org/10.1016/s0022-2836(03)00239-0
29 https://doi.org/10.1073/pnas.102102699
30 https://doi.org/10.1074/mcp.m100037-mcp200
31 https://doi.org/10.1091/mbc.11.12.4241
32 https://doi.org/10.1093/bioinformatics/btg1002
33 https://doi.org/10.1093/bioinformatics/btg153
34 https://doi.org/10.1093/bioinformatics/btg352
35 https://doi.org/10.1093/bioinformatics/bth483
36 https://doi.org/10.1093/bioinformatics/bti1016
37 https://doi.org/10.1093/nar/28.1.37
38 https://doi.org/10.1093/nar/29.1.242
39 https://doi.org/10.1093/nar/30.1.303
40 https://doi.org/10.1093/nar/gkg466
41 https://doi.org/10.1093/nar/gki060
42 https://doi.org/10.1101/gr.153002
43 https://doi.org/10.1126/science.1087361
44 https://doi.org/10.1126/science.285.5428.751
45 https://doi.org/10.1142/9789812702456_0050
46 https://doi.org/10.1142/9789812799623_0053
47 https://doi.org/10.1145/130385.130401
48 schema:datePublished 2006-03
49 schema:datePublishedReg 2006-03-01
50 schema:description The protein-protein interaction networks of even well-studied model organisms are sketchy at best, highlighting the continued need for computational methods to help direct experimentalists in the search for novel interactions. This need has prompted the development of a number of methods for predicting protein-protein interactions based on various sources of data and methodologies. The common method for choosing negative examples for training a predictor of protein-protein interactions is based on annotations of cellular localization, and the observation that pairs of proteins that have different localization patterns are unlikely to interact. While this method leads to high quality sets of non-interacting proteins, we find that this choice can lead to biased estimates of prediction accuracy, because the constraints placed on the distribution of the negative examples makes the task easier. The effects of this bias are demonstrated in the context of both sequence-based and non-sequence based features used for predicting protein-protein interactions.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N56cf2a60fb234ee692daf949257da3bc
55 Nc384b107683a47da9a7bec9eddb0e23e
56 sg:journal.1023786
57 schema:name Choosing negative examples for the prediction of protein-protein interactions
58 schema:pagination s2
59 schema:productId N191c4e0875994c65b378f95264111a17
60 N29962979aeac4e469da1bc0972f1a5e3
61 N93568499c2f046048d7abb86dcd548cb
62 Na03f417aa848460e96e536c643f9d42b
63 Nf5c62e81440e4fb38b8f1aa09664e0f6
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038206691
65 https://doi.org/10.1186/1471-2105-7-s1-s2
66 schema:sdDatePublished 2019-04-11T00:14
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N62924cecb7e747f39db72a0ad90d68bb
69 schema:url http://link.springer.com/10.1186%2F1471-2105-7-S1-S2
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N17aa22f0009a416a8a2ea376d57e18c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Binding Sites
75 rdf:type schema:DefinedTerm
76 N191c4e0875994c65b378f95264111a17 schema:name nlm_unique_id
77 schema:value 100965194
78 rdf:type schema:PropertyValue
79 N29962979aeac4e469da1bc0972f1a5e3 schema:name readcube_id
80 schema:value b60135c4ea0994ca7295ec8e428360620f1738a2eabe26d61baf5d3909f83964
81 rdf:type schema:PropertyValue
82 N331b1b8397fc49adabefe985fa40d944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name ROC Curve
84 rdf:type schema:DefinedTerm
85 N3f71458e7d2d4edb9385de630906b478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Molecular Conformation
87 rdf:type schema:DefinedTerm
88 N457c41b6e8ab46368f62c715a5931466 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Proteins
90 rdf:type schema:DefinedTerm
91 N56cf2a60fb234ee692daf949257da3bc schema:volumeNumber 7
92 rdf:type schema:PublicationVolume
93 N62924cecb7e747f39db72a0ad90d68bb schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N68c0ca497e83436481b6dc9126cfec75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Sequence Alignment
97 rdf:type schema:DefinedTerm
98 N7a8c14c064c24cb290129c2feffad18c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Phosphorylation
100 rdf:type schema:DefinedTerm
101 N7f20bce5a023485d9077db033f7cf62a rdf:first sg:person.01334532172.13
102 rdf:rest rdf:nil
103 N7f5b4e0652e14495ab0b72a4a6a36649 rdf:first sg:person.01242755504.30
104 rdf:rest N7f20bce5a023485d9077db033f7cf62a
105 N841313e5568842508c12d40e27c9ee8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Computational Biology
107 rdf:type schema:DefinedTerm
108 N88b0d12cc2ce416b8071558db50c8319 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Protein Interaction Mapping
110 rdf:type schema:DefinedTerm
111 N93568499c2f046048d7abb86dcd548cb schema:name dimensions_id
112 schema:value pub.1038206691
113 rdf:type schema:PropertyValue
114 N9a1b1a9a2ca34211926aaa5fb7983aff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Software
116 rdf:type schema:DefinedTerm
117 Na03f417aa848460e96e536c643f9d42b schema:name pubmed_id
118 schema:value 16723005
119 rdf:type schema:PropertyValue
120 Nb59ef81b156049c9958ba6e9ef25c9f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Proteomics
122 rdf:type schema:DefinedTerm
123 Nbb1195cce54b473fb53f2bbbc143c847 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Oligonucleotide Array Sequence Analysis
125 rdf:type schema:DefinedTerm
126 Nc384b107683a47da9a7bec9eddb0e23e schema:issueNumber Suppl 1
127 rdf:type schema:PublicationIssue
128 Ne16bd968a1ff4087a4a94b42fe5099d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Databases, Protein
130 rdf:type schema:DefinedTerm
131 Ne8612789e9984c50b770c706d68c3985 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Protein Folding
133 rdf:type schema:DefinedTerm
134 Nf5c62e81440e4fb38b8f1aa09664e0f6 schema:name doi
135 schema:value 10.1186/1471-2105-7-s1-s2
136 rdf:type schema:PropertyValue
137 Nfcf0bdbbbddf49f7b144cddcf8915775 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Algorithms
139 rdf:type schema:DefinedTerm
140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
141 schema:name Biological Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biochemistry and Cell Biology
145 rdf:type schema:DefinedTerm
146 sg:grant.2439911 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-s1-s2
147 rdf:type schema:MonetaryGrant
148 sg:grant.2632019 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-s1-s2
149 rdf:type schema:MonetaryGrant
150 sg:grant.3034927 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-s1-s2
151 rdf:type schema:MonetaryGrant
152 sg:journal.1023786 schema:issn 1471-2105
153 schema:name BMC Bioinformatics
154 rdf:type schema:Periodical
155 sg:person.01242755504.30 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
156 schema:familyName Ben-Hur
157 schema:givenName Asa
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30
159 rdf:type schema:Person
160 sg:person.01334532172.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
161 schema:familyName Noble
162 schema:givenName William Stafford
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334532172.13
164 rdf:type schema:Person
165 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
166 https://doi.org/10.1038/75556
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017837373
169 https://doi.org/10.1038/nature750
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2105-5-154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014463760
172 https://doi.org/10.1186/1471-2105-5-154
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1471-2105-5-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002506753
175 https://doi.org/10.1186/1471-2105-5-38
176 rdf:type schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1075024926 schema:CreativeWork
178 https://app.dimensions.ai/details/publication/pub.1077020040 schema:CreativeWork
179 https://doi.org/10.1002/prot.10074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026276784
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1006/jmbi.2001.4920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020884192
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.mib.2004.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032188145
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0022-2836(03)00114-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036437267
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0022-2836(03)00239-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030571302
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.102102699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034359388
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1074/mcp.m100037-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000521469
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1091/mbc.11.12.4241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048274369
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/btg1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013915575
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/btg153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039614576
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/btg352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049200636
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/bth483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007650574
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/bti1016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050590164
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/nar/28.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031366016
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/nar/29.1.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009009357
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/30.1.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014503362
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/nar/gkg466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007007211
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/nar/gki060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020293550
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1101/gr.153002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289896
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1087361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048921070
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.285.5428.751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013411081
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1142/9789812702456_0050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096063152
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1142/9789812799623_0053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096080294
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1145/130385.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379424
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
228 schema:name Department of Computer Science, Colorado State University, Fort Collins, CO, USA
229 Department of Computer Science, University of Colorado, Boulder, CO, USA
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
232 schema:name Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
233 Department of Genome Sciences, University of Washington, Seattle, WA, USA
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...