A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

I Emrah Nikerel, Wouter A van Winden, Walter M van Gulik, Joseph J Heijnen

ABSTRACT

BACKGROUND: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format have been proposed as a suitable alternative with fewer parameters. RESULTS: In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC) simulations. CONCLUSION: The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only. Addition of steady state perturbation of enzyme activities solved this problem. More... »

PAGES

540

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-540

DOI

http://dx.doi.org/10.1186/1471-2105-7-540

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045849325

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17184531


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Clearance Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Department of Biotechnology, TU Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikerel", 
        "givenName": "I Emrah", 
        "id": "sg:person.01160626377.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160626377.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Department of Biotechnology, TU Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Winden", 
        "givenName": "Wouter A", 
        "id": "sg:person.01216753414.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216753414.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Department of Biotechnology, TU Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Gulik", 
        "givenName": "Walter M", 
        "id": "sg:person.0615715153.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615715153.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Department of Biotechnology, TU Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heijnen", 
        "givenName": "Joseph J", 
        "id": "sg:person.01026476151.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026476151.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/mben.2001.0216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000864680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.1993.1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000953020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260411116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004166313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1996.0176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005361151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1993.1202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006090348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006100340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006100340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19970820)55:4<592::aid-bit2>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011058924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19970720)55:2<305::aid-bit8>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011306897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1262503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011356568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1994.1131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014595841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1996.0175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014602470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2004.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014791307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015769023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260470211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019477997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp00026a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019830747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020692057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1096-7176(03)00025-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020801935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1096-7176(03)00025-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020801935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.1999.4048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020841176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2004.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021679194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.104.048090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022379440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023349404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(01)02613-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024476140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp990018h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026207436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1993.1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027302274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2004.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029180455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2004.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030723931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0014-2956.2004.04269.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.232349399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031830342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1992.tb42571.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032171202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp990017p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034655671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(90)90033-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035682547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(90)90033-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035682547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1567-1364.2006.00144.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039413253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039935619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/btpr.5420030302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042493160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042863184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043834083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044595105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260480617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045489355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mben.1998.0110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048118574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3130721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048472198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3130721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048472198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1327.2000.01527.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050429428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050821991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050821991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0071149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056720756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0071149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056720756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2047876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062519696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079559233", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format have been proposed as a suitable alternative with fewer parameters.\nRESULTS: In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC) simulations.\nCONCLUSION: The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only. Addition of steady state perturbation of enzyme activities solved this problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-540", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics", 
    "pagination": "540", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "da66325221b1846c257c76319eb31f40e8b18204f9fa6bf1d943a852af717b4a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17184531"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-540"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045849325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-540", 
      "https://app.dimensions.ai/details/publication/pub.1045849325"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-7-540"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-540'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-540'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-540'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-540'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      84 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-540 schema:about N4dbdb21c62b24ede9ea4d36ec6c2f1b5
2 N4ee284f9a777449396677d8b95b6dd93
3 N6959a5ee7e2547c2a6b498aa27e9726a
4 N6d4c48d53eb34bc8a43e3575e34c7da5
5 N803b2db673824c8bb30c20c218b0ad61
6 N863ad7d694b54639a88aaa941c56f1da
7 N8ed4adf3dca342dc991ded5597b1ec0a
8 N951c0d5caf7f4f0aaae8c6cf89a87c34
9 Ncc87a575d6a54ff9a2f75c0e9036d0b7
10 Ncda19eeadeee40d6b28f59dae0538f3f
11 anzsrc-for:01
12 anzsrc-for:0102
13 schema:author N1d6e49619f494afc9f85b337b0d506fd
14 schema:citation https://app.dimensions.ai/details/publication/pub.1079559233
15 https://doi.org/10.1002/(sici)1097-0290(19970720)55:2<305::aid-bit8>3.0.co;2-m
16 https://doi.org/10.1002/(sici)1097-0290(19970820)55:4<592::aid-bit2>3.0.co;2-c
17 https://doi.org/10.1002/bit.10328
18 https://doi.org/10.1002/bit.1075
19 https://doi.org/10.1002/bit.20235
20 https://doi.org/10.1002/bit.20558
21 https://doi.org/10.1002/bit.260411116
22 https://doi.org/10.1002/bit.260470211
23 https://doi.org/10.1002/bit.260480617
24 https://doi.org/10.1002/btpr.5420030302
25 https://doi.org/10.1006/abio.1993.1452
26 https://doi.org/10.1006/abio.1999.4048
27 https://doi.org/10.1006/jtbi.1993.1202
28 https://doi.org/10.1006/jtbi.1993.1203
29 https://doi.org/10.1006/jtbi.1994.1131
30 https://doi.org/10.1006/jtbi.1996.0175
31 https://doi.org/10.1006/jtbi.1996.0176
32 https://doi.org/10.1006/mben.1998.0110
33 https://doi.org/10.1006/mben.2001.0216
34 https://doi.org/10.1016/0141-0229(90)90033-m
35 https://doi.org/10.1016/0141-0229(94)90033-7
36 https://doi.org/10.1016/j.ab.2004.09.001
37 https://doi.org/10.1016/j.ymben.2004.07.001
38 https://doi.org/10.1016/j.ymben.2004.07.002
39 https://doi.org/10.1016/j.ymben.2004.12.002
40 https://doi.org/10.1016/j.ymben.2005.11.002
41 https://doi.org/10.1016/j.ymben.2005.11.003
42 https://doi.org/10.1016/s0014-5793(01)02613-8
43 https://doi.org/10.1016/s1096-7176(03)00025-9
44 https://doi.org/10.1021/bp00026a003
45 https://doi.org/10.1021/bp990017p
46 https://doi.org/10.1021/bp990018h
47 https://doi.org/10.1042/bj3130721
48 https://doi.org/10.1042/bst0071149
49 https://doi.org/10.1046/j.1432-1327.2000.01527.x
50 https://doi.org/10.1073/pnas.232349399
51 https://doi.org/10.1093/bioinformatics/bth140
52 https://doi.org/10.1093/nar/30.1.47
53 https://doi.org/10.1101/gr.1262503
54 https://doi.org/10.1111/j.0014-2956.2004.04269.x
55 https://doi.org/10.1111/j.1567-1364.2006.00144.x
56 https://doi.org/10.1111/j.1749-6632.1992.tb42571.x
57 https://doi.org/10.1126/science.2047876
58 https://doi.org/10.1529/biophysj.104.048090
59 schema:datePublished 2006-12
60 schema:datePublishedReg 2006-12-01
61 schema:description BACKGROUND: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format have been proposed as a suitable alternative with fewer parameters. RESULTS: In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC) simulations. CONCLUSION: The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only. Addition of steady state perturbation of enzyme activities solved this problem.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf N27450340ff9b44c4a60521fb7f732984
66 N7a27ba8ed43b4d508366720758f3a846
67 sg:journal.1023786
68 schema:name A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics
69 schema:pagination 540
70 schema:productId N010f9928648b45939c6ccb63e07eab92
71 N135e0d77c22941b18345b2339f0238e0
72 N81ba664d39484e30a92475e0071f5014
73 Nd173e0eda5804acab0ead04072f4dc8b
74 Nd981fcb0ef57461b8458e53119c02f9a
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045849325
76 https://doi.org/10.1186/1471-2105-7-540
77 schema:sdDatePublished 2019-04-10T19:56
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Naac0f118aea0484689c8582c9668e56c
80 schema:url http://link.springer.com/10.1186%2F1471-2105-7-540
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N010f9928648b45939c6ccb63e07eab92 schema:name dimensions_id
85 schema:value pub.1045849325
86 rdf:type schema:PropertyValue
87 N135e0d77c22941b18345b2339f0238e0 schema:name nlm_unique_id
88 schema:value 100965194
89 rdf:type schema:PropertyValue
90 N1d6e49619f494afc9f85b337b0d506fd rdf:first sg:person.01160626377.35
91 rdf:rest N70458eb34cd146a796c779872675d2f2
92 N27450340ff9b44c4a60521fb7f732984 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N27e8bdb8de874dbcaac306b73384cf07 rdf:first sg:person.01026476151.36
95 rdf:rest rdf:nil
96 N3b20020079a345009422491be31abe99 rdf:first sg:person.0615715153.53
97 rdf:rest N27e8bdb8de874dbcaac306b73384cf07
98 N4dbdb21c62b24ede9ea4d36ec6c2f1b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Proteome
100 rdf:type schema:DefinedTerm
101 N4ee284f9a777449396677d8b95b6dd93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Metabolic Clearance Rate
103 rdf:type schema:DefinedTerm
104 N6959a5ee7e2547c2a6b498aa27e9726a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Glycolysis
106 rdf:type schema:DefinedTerm
107 N6d4c48d53eb34bc8a43e3575e34c7da5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Saccharomyces cerevisiae
109 rdf:type schema:DefinedTerm
110 N70458eb34cd146a796c779872675d2f2 rdf:first sg:person.01216753414.39
111 rdf:rest N3b20020079a345009422491be31abe99
112 N7a27ba8ed43b4d508366720758f3a846 schema:volumeNumber 7
113 rdf:type schema:PublicationVolume
114 N803b2db673824c8bb30c20c218b0ad61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Glucose
116 rdf:type schema:DefinedTerm
117 N81ba664d39484e30a92475e0071f5014 schema:name doi
118 schema:value 10.1186/1471-2105-7-540
119 rdf:type schema:PropertyValue
120 N863ad7d694b54639a88aaa941c56f1da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Saccharomyces cerevisiae Proteins
122 rdf:type schema:DefinedTerm
123 N8ed4adf3dca342dc991ded5597b1ec0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Models, Biological
125 rdf:type schema:DefinedTerm
126 N951c0d5caf7f4f0aaae8c6cf89a87c34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Kinetics
128 rdf:type schema:DefinedTerm
129 Naac0f118aea0484689c8582c9668e56c schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 Ncc87a575d6a54ff9a2f75c0e9036d0b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Algorithms
133 rdf:type schema:DefinedTerm
134 Ncda19eeadeee40d6b28f59dae0538f3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Linear Models
136 rdf:type schema:DefinedTerm
137 Nd173e0eda5804acab0ead04072f4dc8b schema:name readcube_id
138 schema:value da66325221b1846c257c76319eb31f40e8b18204f9fa6bf1d943a852af717b4a
139 rdf:type schema:PropertyValue
140 Nd981fcb0ef57461b8458e53119c02f9a schema:name pubmed_id
141 schema:value 17184531
142 rdf:type schema:PropertyValue
143 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
144 schema:name Mathematical Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
147 schema:name Applied Mathematics
148 rdf:type schema:DefinedTerm
149 sg:journal.1023786 schema:issn 1471-2105
150 schema:name BMC Bioinformatics
151 rdf:type schema:Periodical
152 sg:person.01026476151.36 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
153 schema:familyName Heijnen
154 schema:givenName Joseph J
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026476151.36
156 rdf:type schema:Person
157 sg:person.01160626377.35 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
158 schema:familyName Nikerel
159 schema:givenName I Emrah
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160626377.35
161 rdf:type schema:Person
162 sg:person.01216753414.39 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
163 schema:familyName van Winden
164 schema:givenName Wouter A
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216753414.39
166 rdf:type schema:Person
167 sg:person.0615715153.53 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
168 schema:familyName van Gulik
169 schema:givenName Walter M
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615715153.53
171 rdf:type schema:Person
172 https://app.dimensions.ai/details/publication/pub.1079559233 schema:CreativeWork
173 https://doi.org/10.1002/(sici)1097-0290(19970720)55:2<305::aid-bit8>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1011306897
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/(sici)1097-0290(19970820)55:4<592::aid-bit2>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1011058924
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/bit.10328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042863184
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/bit.1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043834083
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/bit.20235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039935619
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/bit.20558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050821991
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/bit.260411116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004166313
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/bit.260470211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019477997
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/bit.260480617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045489355
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/btpr.5420030302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042493160
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1006/abio.1993.1452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000953020
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1006/abio.1999.4048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020841176
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1006/jtbi.1993.1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006090348
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1006/jtbi.1993.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027302274
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1006/jtbi.1994.1131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014595841
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1006/jtbi.1996.0175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014602470
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1006/jtbi.1996.0176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005361151
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1006/mben.1998.0110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048118574
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1006/mben.2001.0216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000864680
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/0141-0229(90)90033-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1035682547
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/0141-0229(94)90033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006100340
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.ab.2004.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014791307
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.ymben.2004.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030723931
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.ymben.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021679194
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.ymben.2004.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029180455
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.ymben.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015769023
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.ymben.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020692057
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/s0014-5793(01)02613-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024476140
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/s1096-7176(03)00025-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020801935
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1021/bp00026a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019830747
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1021/bp990017p schema:sameAs https://app.dimensions.ai/details/publication/pub.1034655671
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1021/bp990018h schema:sameAs https://app.dimensions.ai/details/publication/pub.1026207436
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1042/bj3130721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048472198
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1042/bst0071149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056720756
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1046/j.1432-1327.2000.01527.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050429428
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1073/pnas.232349399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031830342
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bioinformatics/bth140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044595105
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/nar/30.1.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023349404
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1101/gr.1262503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011356568
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1111/j.0014-2956.2004.04269.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031374115
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1111/j.1567-1364.2006.00144.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039413253
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1111/j.1749-6632.1992.tb42571.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032171202
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1126/science.2047876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062519696
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1529/biophysj.104.048090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022379440
260 rdf:type schema:CreativeWork
261 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
262 schema:name Department of Biotechnology, TU Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...