Goulphar: rapid access and expertise for standard two-color microarray normalization methods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Sophie Lemoine, Florence Combes, Nicolas Servant, Stéphane Le Crom

ABSTRACT

BACKGROUND: Raw data normalization is a critical step in microarray data analysis because it directly affects data interpretation. Most of the normalization methods currently used are included in the R/BioConductor packages but it is often difficult to identify the most appropriate method. Furthermore, the use of R commands for functions and graphics can introduce mistakes that are difficult to trace. We present here a script written in R that provides a flexible means of access to and monitoring of data normalization for two-color microarrays. This script combines the power of BioConductor and R analysis functions and reduces the amount of R programming required. RESULTS: Goulphar was developed in and runs using the R language and environment. It combines and extends functions found in BioConductor packages (limma and marray) to correct for dye biases and spatial artifacts. Goulphar provides a wide range of optional and customizable filters for excluding incorrect signals during the pre-processing step. It displays informative output plots, enabling the user to monitor the normalization process, and helps adapt the normalization method appropriately to the data. All these analyses and graphical outputs are presented in a single PDF report. CONCLUSION: Goulphar provides simple, rapid access to the power of the R/BioConductor statistical analysis packages, with precise control and visualization of the results obtained. Complete documentation, examples and online forms for setting script parameters are available from http://transcriptome.ens.fr/goulphar/. More... »

PAGES

467

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-467

DOI

http://dx.doi.org/10.1186/1471-2105-7-467

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001898383

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17059595


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expert Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Situ Hybridization, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Fluorescence, Multiphoton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "IFR36, Plate-forme Transcriptome, \u00c9cole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lemoine", 
        "givenName": "Sophie", 
        "id": "sg:person.0772523607.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772523607.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IFR36, Plate-forme Transcriptome, \u00c9cole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Combes", 
        "givenName": "Florence", 
        "id": "sg:person.01355137642.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355137642.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IFR36, Plate-forme Transcriptome, \u00c9cole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Servant", 
        "givenName": "Nicolas", 
        "id": "sg:person.01157647425.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157647425.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IFR36, Plate-forme Transcriptome, \u00c9cole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex05, France", 
            "INSERM U784, \u00c9cole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75230, Paris cedex05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Crom", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.0753450022.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753450022.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-5-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004455854", 
          "https://doi.org/10.1186/1471-2105-5-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013765922672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005822225", 
          "https://doi.org/10.1023/a:1013765922672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.22.8.2642-2649.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011750895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012399158", 
          "https://doi.org/10.1038/nmeth754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012399158", 
          "https://doi.org/10.1038/nmeth754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014595696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.11.1540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020552236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.298.5593.539b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023232587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/6.1.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023336896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027205124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053552", 
          "https://doi.org/10.1038/nmeth756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053552", 
          "https://doi.org/10.1038/nmeth756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039319384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041187811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(03)00155-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042013441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(03)00155-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042013441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(03)00155-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042013441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048126336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050851486", 
          "https://doi.org/10.1186/1471-2105-6-306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/dna.2004.23.635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059251896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077603669", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Raw data normalization is a critical step in microarray data analysis because it directly affects data interpretation. Most of the normalization methods currently used are included in the R/BioConductor packages but it is often difficult to identify the most appropriate method. Furthermore, the use of R commands for functions and graphics can introduce mistakes that are difficult to trace. We present here a script written in R that provides a flexible means of access to and monitoring of data normalization for two-color microarrays. This script combines the power of BioConductor and R analysis functions and reduces the amount of R programming required.\nRESULTS: Goulphar was developed in and runs using the R language and environment. It combines and extends functions found in BioConductor packages (limma and marray) to correct for dye biases and spatial artifacts. Goulphar provides a wide range of optional and customizable filters for excluding incorrect signals during the pre-processing step. It displays informative output plots, enabling the user to monitor the normalization process, and helps adapt the normalization method appropriately to the data. All these analyses and graphical outputs are presented in a single PDF report.\nCONCLUSION: Goulphar provides simple, rapid access to the power of the R/BioConductor statistical analysis packages, with precise control and visualization of the results obtained. Complete documentation, examples and online forms for setting script parameters are available from http://transcriptome.ens.fr/goulphar/.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-467", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Goulphar: rapid access and expertise for standard two-color microarray normalization methods", 
    "pagination": "467", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "090b086f13e3d5aa0160ab5b0fa256e9097bac8086061a676e58fa4d7236cccd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17059595"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-467"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001898383"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-467", 
      "https://app.dimensions.ai/details/publication/pub.1001898383"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-7-467"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-467'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-467'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-467'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-467'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      58 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-467 schema:about N255816d55c1b40ff9f16bd774dcf11ed
2 N2fca0c1f83164fedbfae7134f96877e5
3 N39c1009b92394a30acb85b2ba5945adc
4 N81c0f4cde34646c19f72d6d730315fca
5 N89afd1412c8d44079d14d201af5f37d3
6 N9390fbed5c384a5983688a664dd05e77
7 N9c4571aa5eab4b93b4d1c5aaba855b06
8 Nb08ebe8a613a4cb3ab503da9d1bc1d0c
9 Nb86ac91a80ae4e629807443c661fcbcd
10 Nd6bbd42c5d434f57909fb0874c327415
11 anzsrc-for:01
12 anzsrc-for:0104
13 schema:author N53a6f6f5361f4402ab8fb4787008906c
14 schema:citation sg:pub.10.1023/a:1013765922672
15 sg:pub.10.1038/nmeth754
16 sg:pub.10.1038/nmeth756
17 sg:pub.10.1186/1471-2105-5-80
18 sg:pub.10.1186/1471-2105-6-306
19 sg:pub.10.1186/gb-2004-5-10-r80
20 https://app.dimensions.ai/details/publication/pub.1077603669
21 https://doi.org/10.1016/s1046-2023(03)00155-5
22 https://doi.org/10.1089/dna.2004.23.635
23 https://doi.org/10.1093/bib/6.1.86
24 https://doi.org/10.1093/bioinformatics/18.11.1540
25 https://doi.org/10.1093/bioinformatics/bth401
26 https://doi.org/10.1093/bioinformatics/bth449
27 https://doi.org/10.1093/nar/30.4.e15
28 https://doi.org/10.1093/nar/gkh446
29 https://doi.org/10.1093/nar/gki497
30 https://doi.org/10.1093/nar/gkl038
31 https://doi.org/10.1126/science.298.5593.539b
32 https://doi.org/10.1128/mcb.22.8.2642-2649.2002
33 schema:datePublished 2006-12
34 schema:datePublishedReg 2006-12-01
35 schema:description BACKGROUND: Raw data normalization is a critical step in microarray data analysis because it directly affects data interpretation. Most of the normalization methods currently used are included in the R/BioConductor packages but it is often difficult to identify the most appropriate method. Furthermore, the use of R commands for functions and graphics can introduce mistakes that are difficult to trace. We present here a script written in R that provides a flexible means of access to and monitoring of data normalization for two-color microarrays. This script combines the power of BioConductor and R analysis functions and reduces the amount of R programming required. RESULTS: Goulphar was developed in and runs using the R language and environment. It combines and extends functions found in BioConductor packages (limma and marray) to correct for dye biases and spatial artifacts. Goulphar provides a wide range of optional and customizable filters for excluding incorrect signals during the pre-processing step. It displays informative output plots, enabling the user to monitor the normalization process, and helps adapt the normalization method appropriately to the data. All these analyses and graphical outputs are presented in a single PDF report. CONCLUSION: Goulphar provides simple, rapid access to the power of the R/BioConductor statistical analysis packages, with precise control and visualization of the results obtained. Complete documentation, examples and online forms for setting script parameters are available from http://transcriptome.ens.fr/goulphar/.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N54822792fb1d4f32b118287f4b99110a
40 N759d8dde7ffa4db3adfa265e8e5dec40
41 sg:journal.1023786
42 schema:name Goulphar: rapid access and expertise for standard two-color microarray normalization methods
43 schema:pagination 467
44 schema:productId N45c1ff7451034705babe5fc56224c796
45 Nc36fb00fad874e578966409bcad77d9a
46 Nc435ca1026f8485dbfd8d74eaa76abe3
47 Nd5a43bff81f84fbaa4278369ab41ba43
48 Nef8b294020f24fa0baf53e46da427ed2
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001898383
50 https://doi.org/10.1186/1471-2105-7-467
51 schema:sdDatePublished 2019-04-11T09:59
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N9bf791f6908143718172b970a0a3677f
54 schema:url https://link.springer.com/10.1186%2F1471-2105-7-467
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N255816d55c1b40ff9f16bd774dcf11ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name User-Computer Interface
60 rdf:type schema:DefinedTerm
61 N27166b4a3b994cf0b3929795268eeff6 rdf:first sg:person.01157647425.78
62 rdf:rest Nb52dd7028ebe405799f825ea2f06638f
63 N2fca0c1f83164fedbfae7134f96877e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Reproducibility of Results
65 rdf:type schema:DefinedTerm
66 N32328b544ca44f0097cc6b470d8c9c85 schema:name IFR36, Plate-forme Transcriptome, École Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex05, France
67 rdf:type schema:Organization
68 N39c1009b92394a30acb85b2ba5945adc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Oligonucleotide Array Sequence Analysis
70 rdf:type schema:DefinedTerm
71 N45c1ff7451034705babe5fc56224c796 schema:name readcube_id
72 schema:value 090b086f13e3d5aa0160ab5b0fa256e9097bac8086061a676e58fa4d7236cccd
73 rdf:type schema:PropertyValue
74 N53a6f6f5361f4402ab8fb4787008906c rdf:first sg:person.0772523607.01
75 rdf:rest Naa67fbd3782c48c192e90079cd47a9dd
76 N54822792fb1d4f32b118287f4b99110a schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N6a169c9f8b334b24afb8dceee29dbf0f schema:name IFR36, Plate-forme Transcriptome, École Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex05, France
79 rdf:type schema:Organization
80 N759d8dde7ffa4db3adfa265e8e5dec40 schema:volumeNumber 7
81 rdf:type schema:PublicationVolume
82 N7f0fab341d004d97bdcdc5a7420c3cac schema:name IFR36, Plate-forme Transcriptome, École Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex05, France
83 INSERM U784, École Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex05, France
84 rdf:type schema:Organization
85 N81c0f4cde34646c19f72d6d730315fca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Calibration
87 rdf:type schema:DefinedTerm
88 N89afd1412c8d44079d14d201af5f37d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name In Situ Hybridization, Fluorescence
90 rdf:type schema:DefinedTerm
91 N9390fbed5c384a5983688a664dd05e77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Sensitivity and Specificity
93 rdf:type schema:DefinedTerm
94 N9bf791f6908143718172b970a0a3677f schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N9c4571aa5eab4b93b4d1c5aaba855b06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 Naa67fbd3782c48c192e90079cd47a9dd rdf:first sg:person.01355137642.93
100 rdf:rest N27166b4a3b994cf0b3929795268eeff6
101 Nb08ebe8a613a4cb3ab503da9d1bc1d0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Expert Systems
103 rdf:type schema:DefinedTerm
104 Nb52dd7028ebe405799f825ea2f06638f rdf:first sg:person.0753450022.20
105 rdf:rest rdf:nil
106 Nb86ac91a80ae4e629807443c661fcbcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Software
108 rdf:type schema:DefinedTerm
109 Nbe5ed850b61c4b45af8bac33840c01c0 schema:name IFR36, Plate-forme Transcriptome, École Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex05, France
110 rdf:type schema:Organization
111 Nc36fb00fad874e578966409bcad77d9a schema:name dimensions_id
112 schema:value pub.1001898383
113 rdf:type schema:PropertyValue
114 Nc435ca1026f8485dbfd8d74eaa76abe3 schema:name nlm_unique_id
115 schema:value 100965194
116 rdf:type schema:PropertyValue
117 Nd5a43bff81f84fbaa4278369ab41ba43 schema:name doi
118 schema:value 10.1186/1471-2105-7-467
119 rdf:type schema:PropertyValue
120 Nd6bbd42c5d434f57909fb0874c327415 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Microscopy, Fluorescence, Multiphoton
122 rdf:type schema:DefinedTerm
123 Nef8b294020f24fa0baf53e46da427ed2 schema:name pubmed_id
124 schema:value 17059595
125 rdf:type schema:PropertyValue
126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
127 schema:name Mathematical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
130 schema:name Statistics
131 rdf:type schema:DefinedTerm
132 sg:journal.1023786 schema:issn 1471-2105
133 schema:name BMC Bioinformatics
134 rdf:type schema:Periodical
135 sg:person.01157647425.78 schema:affiliation Nbe5ed850b61c4b45af8bac33840c01c0
136 schema:familyName Servant
137 schema:givenName Nicolas
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157647425.78
139 rdf:type schema:Person
140 sg:person.01355137642.93 schema:affiliation N6a169c9f8b334b24afb8dceee29dbf0f
141 schema:familyName Combes
142 schema:givenName Florence
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355137642.93
144 rdf:type schema:Person
145 sg:person.0753450022.20 schema:affiliation N7f0fab341d004d97bdcdc5a7420c3cac
146 schema:familyName Le Crom
147 schema:givenName Stéphane
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753450022.20
149 rdf:type schema:Person
150 sg:person.0772523607.01 schema:affiliation N32328b544ca44f0097cc6b470d8c9c85
151 schema:familyName Lemoine
152 schema:givenName Sophie
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772523607.01
154 rdf:type schema:Person
155 sg:pub.10.1023/a:1013765922672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005822225
156 https://doi.org/10.1023/a:1013765922672
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmeth754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012399158
159 https://doi.org/10.1038/nmeth754
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmeth756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053552
162 https://doi.org/10.1038/nmeth756
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/1471-2105-5-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004455854
165 https://doi.org/10.1186/1471-2105-5-80
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/1471-2105-6-306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050851486
168 https://doi.org/10.1186/1471-2105-6-306
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
171 https://doi.org/10.1186/gb-2004-5-10-r80
172 rdf:type schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1077603669 schema:CreativeWork
174 https://doi.org/10.1016/s1046-2023(03)00155-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042013441
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1089/dna.2004.23.635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059251896
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/bib/6.1.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023336896
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/bioinformatics/18.11.1540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020552236
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/bth401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014595696
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/bioinformatics/bth449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027205124
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/nar/gkh446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041187811
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/nar/gki497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048126336
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/nar/gkl038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039319384
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.298.5593.539b schema:sameAs https://app.dimensions.ai/details/publication/pub.1023232587
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1128/mcb.22.8.2642-2649.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011750895
197 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...