SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Tim Van den Bulcke, Koenraad Van Leemput, Bart Naudts, Piet van Remortel, Hongwu Ma, Alain Verschoren, Bart De Moor, Kathleen Marchal

ABSTRACT

BACKGROUND: The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. RESULTS: In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. CONCLUSION: This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-43

DOI

http://dx.doi.org/10.1186/1471-2105-7-43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042452525

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16438721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benchmarking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software Validation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001, Heverlee, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van den Bulcke", 
        "givenName": "Tim", 
        "id": "sg:person.01037365125.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037365125.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "ISLab, Dept. Math. and Comp. Sc, University of Antwerp, Middelheimlaan 1, B-2020, Antwerpen, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Leemput", 
        "givenName": "Koenraad", 
        "id": "sg:person.01105500325.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105500325.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "ISLab, Dept. Math. and Comp. Sc, University of Antwerp, Middelheimlaan 1, B-2020, Antwerpen, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naudts", 
        "givenName": "Bart", 
        "id": "sg:person.01153613525.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153613525.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "ISLab, Dept. Math. and Comp. Sc, University of Antwerp, Middelheimlaan 1, B-2020, Antwerpen, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Remortel", 
        "givenName": "Piet", 
        "id": "sg:person.0710104235.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710104235.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GBF German Research Centre for Biotechnology", 
          "id": "https://www.grid.ac/institutes/grid.418123.d", 
          "name": [
            "Dept. of Genome Analysis, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Hongwu", 
        "id": "sg:person.01063362515.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063362515.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "ISLab, Dept. Math. and Comp. Sc, University of Antwerp, Middelheimlaan 1, B-2020, Antwerpen, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verschoren", 
        "givenName": "Alain", 
        "id": "sg:person.016034265055.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034265055.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001, Heverlee, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Moor", 
        "givenName": "Bart", 
        "id": "sg:person.01303274061.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303274061.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001, Heverlee, Belgium", 
            "CMPG, Dept. Microbial and Molecular Systems, K.U.Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marchal", 
        "givenName": "Kathleen", 
        "id": "sg:person.01354214636.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354214636.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001892823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001892823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2003.10.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010255366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011819441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020864922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025271253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029007691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.298.5594.824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48304-7_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036292845", 
          "https://doi.org/10.1007/3-540-48304-7_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48304-7_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036292845", 
          "https://doi.org/10.1007/3-540-48304-7_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1230759100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037459256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh1009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043172753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1094068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045090769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040073", 
          "https://doi.org/10.1038/ng873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040073", 
          "https://doi.org/10.1038/ng873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048969464", 
          "https://doi.org/10.1186/1471-2105-6-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048969464", 
          "https://doi.org/10.1186/1471-2105-6-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049459826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050276898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/13.4.377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050760449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051076828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701753307485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074480889", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074480891", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner.\nRESULTS: In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms.\nCONCLUSION: This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca389bdad29764601856a45e84468092e93a073eaddf387b1e64fcc44e749ddd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16438721"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-43"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042452525"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-43", 
      "https://app.dimensions.ai/details/publication/pub.1042452525"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-7-43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-43'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      63 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-43 schema:about N1e7b7ef2bfad40ed952fd0a70952a897
2 N26a85601eee6432fad0158e1f6aadd54
3 N2aaa431a00c24f74abaa9f6ffaae3f66
4 N580d51170fa444038fce1d38f9fb5ab1
5 N5f5570ad568e46198c06b0e172bd311f
6 N5fe4a55806bd4ba584c771cb80b4f205
7 N63016a2388514644afd50ef22248be5e
8 Nadd23be1d04e4b1290698ca37b265b62
9 Ne7674e781d7340b28ea726e7ada814a7
10 Nf72581354935479d9c62a77ac1185d32
11 Nfee74e49d85340e09962ca88e5e3bdca
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author N1f5c71a4ddda469ba83232372be25188
15 schema:citation sg:pub.10.1007/3-540-48304-7_63
16 sg:pub.10.1038/30918
17 sg:pub.10.1038/ng873
18 sg:pub.10.1038/ng881
19 sg:pub.10.1186/1471-2105-6-8
20 https://app.dimensions.ai/details/publication/pub.1074480889
21 https://app.dimensions.ai/details/publication/pub.1074480891
22 https://doi.org/10.1016/j.physa.2003.10.083
23 https://doi.org/10.1073/pnas.1230759100
24 https://doi.org/10.1089/106652701753307485
25 https://doi.org/10.1093/bioinformatics/13.4.377
26 https://doi.org/10.1093/bioinformatics/17.suppl_1.s215
27 https://doi.org/10.1093/bioinformatics/17.suppl_1.s243
28 https://doi.org/10.1093/bioinformatics/18.suppl_1.s216
29 https://doi.org/10.1093/bioinformatics/btg1069
30 https://doi.org/10.1093/bioinformatics/btg1082
31 https://doi.org/10.1093/bioinformatics/btg313
32 https://doi.org/10.1093/bioinformatics/bth941
33 https://doi.org/10.1093/nar/30.4.e15
34 https://doi.org/10.1093/nar/gkh1009
35 https://doi.org/10.1103/physrevlett.85.5234
36 https://doi.org/10.1126/science.1094068
37 https://doi.org/10.1126/science.298.5594.824
38 schema:datePublished 2006-12
39 schema:datePublishedReg 2006-12-01
40 schema:description BACKGROUND: The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. RESULTS: In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. CONCLUSION: This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N7dd2f9a18e4d486cbc265e70f89b0f55
45 N875d2d9e2392433897cba16509096b12
46 sg:journal.1023786
47 schema:name SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
48 schema:pagination 43
49 schema:productId N09f183694fad4f2f9d10776de1473394
50 N2cb49bdce5754ae89d3a62f68f90d97c
51 N6367f21a746e44c597a8dbd42e13c569
52 N97086126b28b41228428ab87a61c8628
53 Nedba1fc2f88147cd9da59b7dd4435aea
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042452525
55 https://doi.org/10.1186/1471-2105-7-43
56 schema:sdDatePublished 2019-04-11T00:14
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ncaea7f6cbe4d4b45aab43da27bdc9f71
59 schema:url http://link.springer.com/10.1186%2F1471-2105-7-43
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N09f183694fad4f2f9d10776de1473394 schema:name readcube_id
64 schema:value ca389bdad29764601856a45e84468092e93a073eaddf387b1e64fcc44e749ddd
65 rdf:type schema:PropertyValue
66 N1e7b7ef2bfad40ed952fd0a70952a897 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Software Validation
68 rdf:type schema:DefinedTerm
69 N1f2e813960ce40d78d6152737f585a4c rdf:first sg:person.01303274061.35
70 rdf:rest Nf35e2b254ad2443ca200e47338a0e0cb
71 N1f5c71a4ddda469ba83232372be25188 rdf:first sg:person.01037365125.04
72 rdf:rest N5124dd6041b047c1ad2f39ee1a3d1b9a
73 N26a85601eee6432fad0158e1f6aadd54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Models, Biological
75 rdf:type schema:DefinedTerm
76 N2aaa431a00c24f74abaa9f6ffaae3f66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Signal Transduction
78 rdf:type schema:DefinedTerm
79 N2cb49bdce5754ae89d3a62f68f90d97c schema:name doi
80 schema:value 10.1186/1471-2105-7-43
81 rdf:type schema:PropertyValue
82 N48a7a99ba09e47fe8e8095ef916a5a70 rdf:first sg:person.0710104235.84
83 rdf:rest Nc9d91f21cd9641dab3f5db0564dbc653
84 N5124dd6041b047c1ad2f39ee1a3d1b9a rdf:first sg:person.01105500325.86
85 rdf:rest N7216f2f84ceb49349b88ba4e199fa9ec
86 N580d51170fa444038fce1d38f9fb5ab1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Transcription Factors
88 rdf:type schema:DefinedTerm
89 N5f5570ad568e46198c06b0e172bd311f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Databases, Factual
91 rdf:type schema:DefinedTerm
92 N5fe4a55806bd4ba584c771cb80b4f205 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Gene Expression Regulation
94 rdf:type schema:DefinedTerm
95 N63016a2388514644afd50ef22248be5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Software
97 rdf:type schema:DefinedTerm
98 N6367f21a746e44c597a8dbd42e13c569 schema:name dimensions_id
99 schema:value pub.1042452525
100 rdf:type schema:PropertyValue
101 N7216f2f84ceb49349b88ba4e199fa9ec rdf:first sg:person.01153613525.80
102 rdf:rest N48a7a99ba09e47fe8e8095ef916a5a70
103 N7dd2f9a18e4d486cbc265e70f89b0f55 schema:volumeNumber 7
104 rdf:type schema:PublicationVolume
105 N875d2d9e2392433897cba16509096b12 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N8f187f80154e4b7a90c009de67730e86 rdf:first sg:person.016034265055.79
108 rdf:rest N1f2e813960ce40d78d6152737f585a4c
109 N97086126b28b41228428ab87a61c8628 schema:name pubmed_id
110 schema:value 16438721
111 rdf:type schema:PropertyValue
112 Nadd23be1d04e4b1290698ca37b265b62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Benchmarking
114 rdf:type schema:DefinedTerm
115 Nc9d91f21cd9641dab3f5db0564dbc653 rdf:first sg:person.01063362515.08
116 rdf:rest N8f187f80154e4b7a90c009de67730e86
117 Ncaea7f6cbe4d4b45aab43da27bdc9f71 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Ne7674e781d7340b28ea726e7ada814a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Algorithms
121 rdf:type schema:DefinedTerm
122 Nedba1fc2f88147cd9da59b7dd4435aea schema:name nlm_unique_id
123 schema:value 100965194
124 rdf:type schema:PropertyValue
125 Nf35e2b254ad2443ca200e47338a0e0cb rdf:first sg:person.01354214636.95
126 rdf:rest rdf:nil
127 Nf72581354935479d9c62a77ac1185d32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Artificial Intelligence
129 rdf:type schema:DefinedTerm
130 Nfee74e49d85340e09962ca88e5e3bdca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Computer Simulation
132 rdf:type schema:DefinedTerm
133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information and Computing Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
137 schema:name Artificial Intelligence and Image Processing
138 rdf:type schema:DefinedTerm
139 sg:journal.1023786 schema:issn 1471-2105
140 schema:name BMC Bioinformatics
141 rdf:type schema:Periodical
142 sg:person.01037365125.04 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
143 schema:familyName Van den Bulcke
144 schema:givenName Tim
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037365125.04
146 rdf:type schema:Person
147 sg:person.01063362515.08 schema:affiliation https://www.grid.ac/institutes/grid.418123.d
148 schema:familyName Ma
149 schema:givenName Hongwu
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063362515.08
151 rdf:type schema:Person
152 sg:person.01105500325.86 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
153 schema:familyName Van Leemput
154 schema:givenName Koenraad
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105500325.86
156 rdf:type schema:Person
157 sg:person.01153613525.80 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
158 schema:familyName Naudts
159 schema:givenName Bart
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153613525.80
161 rdf:type schema:Person
162 sg:person.01303274061.35 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
163 schema:familyName De Moor
164 schema:givenName Bart
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303274061.35
166 rdf:type schema:Person
167 sg:person.01354214636.95 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
168 schema:familyName Marchal
169 schema:givenName Kathleen
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354214636.95
171 rdf:type schema:Person
172 sg:person.016034265055.79 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
173 schema:familyName Verschoren
174 schema:givenName Alain
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034265055.79
176 rdf:type schema:Person
177 sg:person.0710104235.84 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
178 schema:familyName van Remortel
179 schema:givenName Piet
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710104235.84
181 rdf:type schema:Person
182 sg:pub.10.1007/3-540-48304-7_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036292845
183 https://doi.org/10.1007/3-540-48304-7_63
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
186 https://doi.org/10.1038/30918
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ng873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046040073
189 https://doi.org/10.1038/ng873
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
192 https://doi.org/10.1038/ng881
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-6-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048969464
195 https://doi.org/10.1186/1471-2105-6-8
196 rdf:type schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1074480889 schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1074480891 schema:CreativeWork
199 https://doi.org/10.1016/j.physa.2003.10.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010255366
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.1230759100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037459256
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1089/106652701753307485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204908
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/13.4.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050760449
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/17.suppl_1.s215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020864922
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/17.suppl_1.s243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049459826
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/18.suppl_1.s216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029007691
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btg1069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025271253
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/bioinformatics/btg1082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011819441
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/btg313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051076828
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/bioinformatics/bth941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050276898
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gkh1009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043172753
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.85.5234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001892823
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/science.1094068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045090769
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.418123.d schema:alternateName GBF German Research Centre for Biotechnology
232 schema:name Dept. of Genome Analysis, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124, Braunschweig, Germany
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
235 schema:name ISLab, Dept. Math. and Comp. Sc, University of Antwerp, Middelheimlaan 1, B-2020, Antwerpen, Belgium
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
238 schema:name CMPG, Dept. Microbial and Molecular Systems, K.U.Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
239 ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001, Heverlee, Belgium
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...