Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Hiro Takahashi, Takeshi Nemoto, Teruhiko Yoshida, Hiroyuki Honda, Tadashi Hasegawa

ABSTRACT

BACKGROUND: Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis and selection of treatment. To accomplish this objective, it is important to establish a sophisticated algorithm that can deal with large quantities of data such as gene expression profiles obtained by DNA microarray analysis. RESULTS: Previously, we developed the projective adaptive resonance theory (PART) filtering method as a gene filtering method. This is one of the clustering methods that can select specific genes for each subtype. In this study, we applied the PART filtering method to analyze microarray data that were obtained from soft tissue sarcoma (STS) patients for the extraction of subtype-specific genes. The performance of the filtering method was evaluated by comparison with other widely used methods, such as signal-to-noise, significance analysis of microarrays, and nearest shrunken centroids. In addition, various combinations of filtering and modeling methods were used to extract essential subtype-specific genes. The combination of the PART filtering method and boosting--the PART-BFCS method--showed the highest accuracy. Seven genes among the 15 genes that are frequently selected by this method--MIF, CYFIP2, HSPCB, TIMP3, LDHA, ABR, and RGS3--are known prognostic marker genes for other tumors. These genes are candidate marker genes for the diagnosis of STS. Correlation analysis was performed to extract marker genes that were not selected by PART-BFCS. Sixteen genes among those extracted are also known prognostic marker genes for other tumors, and they could be candidate marker genes for the diagnosis of STS. CONCLUSION: The procedure that consisted of two steps, such as the PART-BFCS and the correlation analysis, was proposed. The results suggest that novel diagnostic and therapeutic targets for STS can be extracted by a procedure that includes the PART filtering method. More... »

PAGES

399

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-399

DOI

http://dx.doi.org/10.1186/1471-2105-7-399

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024153246

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16948864


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sarcoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soft Tissue Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.272242.3", 
          "name": [
            "Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan", 
            "Research Fellow of the Japanese Society for the Promotion of Science (JSPS), Japan", 
            "Genetics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji Chuo-ku, 104-0045, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Hiro", 
        "id": "sg:person.01341114527.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341114527.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.272242.3", 
          "name": [
            "Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nemoto", 
        "givenName": "Takeshi", 
        "id": "sg:person.0675351741.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675351741.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.272242.3", 
          "name": [
            "Genetics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji Chuo-ku, 104-0045, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Teruhiko", 
        "id": "sg:person.014057530702.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014057530702.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honda", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.016617716011.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617716011.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapporo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.263171.0", 
          "name": [
            "Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan", 
            "Department of Surgical Pathology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, 060-8543, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Tadashi", 
        "id": "sg:person.016226167552.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226167552.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001012898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.5479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001500983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.091062498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001631710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcss.1997.1504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004338842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(01)00108-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004539610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2141.1999.01563.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004960204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.8.1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010290016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011161102", 
          "https://doi.org/10.1038/sj.onc.1208652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011161102", 
          "https://doi.org/10.1038/sj.onc.1208652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2002.tb01225.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011608055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2002.tb01225.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011608055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1723(01)80254-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015912126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016017100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/kakoronbunshu.25.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021167796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3205(02)01962-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022055389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/beha.2002.0224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022279744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027533350", 
          "https://doi.org/10.1038/sj.onc.1208443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027533350", 
          "https://doi.org/10.1038/sj.onc.1208443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnen/63.3.210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029289713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.20830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030098953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.050397097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033490993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-4-45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035629138", 
          "https://doi.org/10.1186/1471-2407-4-45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.20965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036382326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2003.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.082099299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0030047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039127082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0030047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039127082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/9.5.757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039473658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)63463-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040502141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.11366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041334584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1033.2002.03109.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043556521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-1-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044720304", 
          "https://doi.org/10.1186/1471-2407-1-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1263/jbb.102.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045729151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012487302797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573168", 
          "https://doi.org/10.1023/a:1012487302797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.1.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048892448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2005.50018.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049178609", 
          "https://doi.org/10.1111/j.1572-0241.2005.50018.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2005.50018.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049178609", 
          "https://doi.org/10.1111/j.1572-0241.2005.50018.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1263/jbb.101.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050780800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.92.22.10282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052473168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.159069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2004.824261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/jcej.38.763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064517280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/jcej.38.763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064517280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/jcej.38.763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064517280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/jcej.39.767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064517452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1379/csc-99r.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067174002", 
          "https://doi.org/10.1379/csc-99r.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1379/csc-99r.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067174002", 
          "https://doi.org/10.1379/csc-99r.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.21.4.895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071514796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.28.2.375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071515928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075060931", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077007493", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis and selection of treatment. To accomplish this objective, it is important to establish a sophisticated algorithm that can deal with large quantities of data such as gene expression profiles obtained by DNA microarray analysis.\nRESULTS: Previously, we developed the projective adaptive resonance theory (PART) filtering method as a gene filtering method. This is one of the clustering methods that can select specific genes for each subtype. In this study, we applied the PART filtering method to analyze microarray data that were obtained from soft tissue sarcoma (STS) patients for the extraction of subtype-specific genes. The performance of the filtering method was evaluated by comparison with other widely used methods, such as signal-to-noise, significance analysis of microarrays, and nearest shrunken centroids. In addition, various combinations of filtering and modeling methods were used to extract essential subtype-specific genes. The combination of the PART filtering method and boosting--the PART-BFCS method--showed the highest accuracy. Seven genes among the 15 genes that are frequently selected by this method--MIF, CYFIP2, HSPCB, TIMP3, LDHA, ABR, and RGS3--are known prognostic marker genes for other tumors. These genes are candidate marker genes for the diagnosis of STS. Correlation analysis was performed to extract marker genes that were not selected by PART-BFCS. Sixteen genes among those extracted are also known prognostic marker genes for other tumors, and they could be candidate marker genes for the diagnosis of STS.\nCONCLUSION: The procedure that consisted of two steps, such as the PART-BFCS and the correlation analysis, was proposed. The results suggest that novel diagnostic and therapeutic targets for STS can be extracted by a procedure that includes the PART filtering method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-399", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method", 
    "pagination": "399", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "731195afc7c61d2a809369fdcd6d82226a5d3656353a375e7a514309c65b5473"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16948864"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-399"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024153246"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-399", 
      "https://app.dimensions.ai/details/publication/pub.1024153246"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-7-399"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-399'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-399'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-399'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-399'


 

This table displays all metadata directly associated to this object as RDF triples.

298 TRIPLES      21 PREDICATES      87 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-399 schema:about N1b4ee66f8f104771a5a371230a8b5dbd
2 N3ecef0aad1454ef5979687035e1a6695
3 N4f1b6055c3c041d18e093637f6fb1d48
4 N522b555623974b4195103381b56d6f89
5 N9994a8a0a1fb4b7a8f3c5f9580acdb8c
6 N9cff848363894cba9a8849ce651ac219
7 Nbe3669472bfb4720ba442f75c91f0e52
8 Nd149dfaebceb4eb49242afc32c4e3cb6
9 Nd49cdd14b507475591ec2df5cfec445e
10 Nd708c2d8b12146e4bc8a816fbc6b42e0
11 Ndda3ea96961d424d8eabd1630e74a954
12 Nee271ae1b5764d049b56d594e8299158
13 Nefb34aa22db24886bfb57c3c90c0d969
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author Nb3db5f735cb34eb7be48096fdf6e5bde
17 schema:citation sg:pub.10.1023/a:1012487302797
18 sg:pub.10.1038/sj.onc.1208443
19 sg:pub.10.1038/sj.onc.1208652
20 sg:pub.10.1111/j.1572-0241.2005.50018.x
21 sg:pub.10.1186/1471-2407-1-17
22 sg:pub.10.1186/1471-2407-4-45
23 sg:pub.10.1379/csc-99r.1
24 https://app.dimensions.ai/details/publication/pub.1075060931
25 https://app.dimensions.ai/details/publication/pub.1077007493
26 https://doi.org/10.1002/cncr.20965
27 https://doi.org/10.1002/ijc.11366
28 https://doi.org/10.1002/ijc.20830
29 https://doi.org/10.1006/jcss.1997.1504
30 https://doi.org/10.1016/j.humpath.2003.10.008
31 https://doi.org/10.1016/s0002-9440(10)63463-3
32 https://doi.org/10.1016/s0024-3205(02)01962-8
33 https://doi.org/10.1016/s0893-6080(01)00108-3
34 https://doi.org/10.1016/s1389-1723(01)80254-1
35 https://doi.org/10.1046/j.1365-2141.1999.01563.x
36 https://doi.org/10.1046/j.1432-1033.2002.03109.x
37 https://doi.org/10.1053/beha.2002.0224
38 https://doi.org/10.1073/pnas.050397097
39 https://doi.org/10.1073/pnas.082099299
40 https://doi.org/10.1073/pnas.091062498
41 https://doi.org/10.1073/pnas.92.22.10282
42 https://doi.org/10.1073/pnas.95.25.14863
43 https://doi.org/10.1073/pnas.97.1.262
44 https://doi.org/10.1093/bioinformatics/18.8.1073
45 https://doi.org/10.1093/bioinformatics/btg424
46 https://doi.org/10.1093/bioinformatics/bth473
47 https://doi.org/10.1093/hmg/9.5.757
48 https://doi.org/10.1093/jnen/63.3.210
49 https://doi.org/10.1109/72.159069
50 https://doi.org/10.1109/tnn.2004.824261
51 https://doi.org/10.1111/j.1349-7006.2002.tb01225.x
52 https://doi.org/10.1126/science.286.5439.531
53 https://doi.org/10.1200/jco.2005.01.5479
54 https://doi.org/10.1252/jcej.38.763
55 https://doi.org/10.1252/jcej.39.767
56 https://doi.org/10.1252/kakoronbunshu.25.695
57 https://doi.org/10.1263/jbb.101.137
58 https://doi.org/10.1263/jbb.102.46
59 https://doi.org/10.1371/journal.pmed.0030047
60 https://doi.org/10.3892/ijo.21.4.895
61 https://doi.org/10.3892/ijo.28.2.375
62 schema:datePublished 2006-12
63 schema:datePublishedReg 2006-12-01
64 schema:description BACKGROUND: Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis and selection of treatment. To accomplish this objective, it is important to establish a sophisticated algorithm that can deal with large quantities of data such as gene expression profiles obtained by DNA microarray analysis. RESULTS: Previously, we developed the projective adaptive resonance theory (PART) filtering method as a gene filtering method. This is one of the clustering methods that can select specific genes for each subtype. In this study, we applied the PART filtering method to analyze microarray data that were obtained from soft tissue sarcoma (STS) patients for the extraction of subtype-specific genes. The performance of the filtering method was evaluated by comparison with other widely used methods, such as signal-to-noise, significance analysis of microarrays, and nearest shrunken centroids. In addition, various combinations of filtering and modeling methods were used to extract essential subtype-specific genes. The combination of the PART filtering method and boosting--the PART-BFCS method--showed the highest accuracy. Seven genes among the 15 genes that are frequently selected by this method--MIF, CYFIP2, HSPCB, TIMP3, LDHA, ABR, and RGS3--are known prognostic marker genes for other tumors. These genes are candidate marker genes for the diagnosis of STS. Correlation analysis was performed to extract marker genes that were not selected by PART-BFCS. Sixteen genes among those extracted are also known prognostic marker genes for other tumors, and they could be candidate marker genes for the diagnosis of STS. CONCLUSION: The procedure that consisted of two steps, such as the PART-BFCS and the correlation analysis, was proposed. The results suggest that novel diagnostic and therapeutic targets for STS can be extracted by a procedure that includes the PART filtering method.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree true
68 schema:isPartOf N101299dd37b8486aa37910692a074a65
69 N7c246cf8ef1a443ea709d7b489ea87ab
70 sg:journal.1023786
71 schema:name Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method
72 schema:pagination 399
73 schema:productId N2074fdea2a0f4d988bb128d002c16305
74 N42e3b6548dae44bb8cdba219092a5cce
75 N6f1f75daf2fa4290b93ac984153a8741
76 Nc71ce9bbbf23437683f489077fb803da
77 Neba15f4091e74042ae3c70b94bc3d543
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024153246
79 https://doi.org/10.1186/1471-2105-7-399
80 schema:sdDatePublished 2019-04-10T18:19
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N0f32671ebe264ad5ad0c3c87ec523a9d
83 schema:url http://link.springer.com/10.1186%2F1471-2105-7-399
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0c3910b2f990487eae0d5868c25cbb44 rdf:first sg:person.014057530702.35
88 rdf:rest N107f666bab164977a025510745e62603
89 N0f32671ebe264ad5ad0c3c87ec523a9d schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N101299dd37b8486aa37910692a074a65 schema:volumeNumber 7
92 rdf:type schema:PublicationVolume
93 N107f666bab164977a025510745e62603 rdf:first sg:person.016617716011.29
94 rdf:rest N7ac70f5ee44c4288947d0a3848bfc3bd
95 N1b4ee66f8f104771a5a371230a8b5dbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Oligonucleotide Array Sequence Analysis
97 rdf:type schema:DefinedTerm
98 N2074fdea2a0f4d988bb128d002c16305 schema:name nlm_unique_id
99 schema:value 100965194
100 rdf:type schema:PropertyValue
101 N3ecef0aad1454ef5979687035e1a6695 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Humans
103 rdf:type schema:DefinedTerm
104 N42e3b6548dae44bb8cdba219092a5cce schema:name doi
105 schema:value 10.1186/1471-2105-7-399
106 rdf:type schema:PropertyValue
107 N4f1b6055c3c041d18e093637f6fb1d48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Algorithms
109 rdf:type schema:DefinedTerm
110 N522b555623974b4195103381b56d6f89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Biomarkers, Tumor
112 rdf:type schema:DefinedTerm
113 N6f1f75daf2fa4290b93ac984153a8741 schema:name readcube_id
114 schema:value 731195afc7c61d2a809369fdcd6d82226a5d3656353a375e7a514309c65b5473
115 rdf:type schema:PropertyValue
116 N75f0bce8adbc43fc9776e509dda7b5c6 rdf:first sg:person.0675351741.76
117 rdf:rest N0c3910b2f990487eae0d5868c25cbb44
118 N7ac70f5ee44c4288947d0a3848bfc3bd rdf:first sg:person.016226167552.43
119 rdf:rest rdf:nil
120 N7c246cf8ef1a443ea709d7b489ea87ab schema:issueNumber 1
121 rdf:type schema:PublicationIssue
122 N9994a8a0a1fb4b7a8f3c5f9580acdb8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Reproducibility of Results
124 rdf:type schema:DefinedTerm
125 N9cff848363894cba9a8849ce651ac219 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gene Expression Profiling
127 rdf:type schema:DefinedTerm
128 Nb3db5f735cb34eb7be48096fdf6e5bde rdf:first sg:person.01341114527.97
129 rdf:rest N75f0bce8adbc43fc9776e509dda7b5c6
130 Nbe3669472bfb4720ba442f75c91f0e52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Computational Biology
132 rdf:type schema:DefinedTerm
133 Nc71ce9bbbf23437683f489077fb803da schema:name pubmed_id
134 schema:value 16948864
135 rdf:type schema:PropertyValue
136 Nd149dfaebceb4eb49242afc32c4e3cb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Cell Line, Tumor
138 rdf:type schema:DefinedTerm
139 Nd49cdd14b507475591ec2df5cfec445e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Gene Expression Regulation, Neoplastic
141 rdf:type schema:DefinedTerm
142 Nd708c2d8b12146e4bc8a816fbc6b42e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Models, Statistical
144 rdf:type schema:DefinedTerm
145 Ndda3ea96961d424d8eabd1630e74a954 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Cluster Analysis
147 rdf:type schema:DefinedTerm
148 Neba15f4091e74042ae3c70b94bc3d543 schema:name dimensions_id
149 schema:value pub.1024153246
150 rdf:type schema:PropertyValue
151 Nee271ae1b5764d049b56d594e8299158 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Soft Tissue Neoplasms
153 rdf:type schema:DefinedTerm
154 Nefb34aa22db24886bfb57c3c90c0d969 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Sarcoma
156 rdf:type schema:DefinedTerm
157 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
158 schema:name Biological Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
161 schema:name Genetics
162 rdf:type schema:DefinedTerm
163 sg:journal.1023786 schema:issn 1471-2105
164 schema:name BMC Bioinformatics
165 rdf:type schema:Periodical
166 sg:person.01341114527.97 schema:affiliation https://www.grid.ac/institutes/grid.272242.3
167 schema:familyName Takahashi
168 schema:givenName Hiro
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341114527.97
170 rdf:type schema:Person
171 sg:person.014057530702.35 schema:affiliation https://www.grid.ac/institutes/grid.272242.3
172 schema:familyName Yoshida
173 schema:givenName Teruhiko
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014057530702.35
175 rdf:type schema:Person
176 sg:person.016226167552.43 schema:affiliation https://www.grid.ac/institutes/grid.263171.0
177 schema:familyName Hasegawa
178 schema:givenName Tadashi
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226167552.43
180 rdf:type schema:Person
181 sg:person.016617716011.29 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
182 schema:familyName Honda
183 schema:givenName Hiroyuki
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617716011.29
185 rdf:type schema:Person
186 sg:person.0675351741.76 schema:affiliation https://www.grid.ac/institutes/grid.272242.3
187 schema:familyName Nemoto
188 schema:givenName Takeshi
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675351741.76
190 rdf:type schema:Person
191 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
192 https://doi.org/10.1023/a:1012487302797
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/sj.onc.1208443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027533350
195 https://doi.org/10.1038/sj.onc.1208443
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/sj.onc.1208652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011161102
198 https://doi.org/10.1038/sj.onc.1208652
199 rdf:type schema:CreativeWork
200 sg:pub.10.1111/j.1572-0241.2005.50018.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049178609
201 https://doi.org/10.1111/j.1572-0241.2005.50018.x
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2407-1-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044720304
204 https://doi.org/10.1186/1471-2407-1-17
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2407-4-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035629138
207 https://doi.org/10.1186/1471-2407-4-45
208 rdf:type schema:CreativeWork
209 sg:pub.10.1379/csc-99r.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067174002
210 https://doi.org/10.1379/csc-99r.1
211 rdf:type schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1075060931 schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1077007493 schema:CreativeWork
214 https://doi.org/10.1002/cncr.20965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036382326
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/ijc.11366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041334584
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/ijc.20830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030098953
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1006/jcss.1997.1504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004338842
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.humpath.2003.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275920
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0002-9440(10)63463-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040502141
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0024-3205(02)01962-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022055389
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0893-6080(01)00108-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004539610
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s1389-1723(01)80254-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015912126
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1046/j.1365-2141.1999.01563.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004960204
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1046/j.1432-1033.2002.03109.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043556521
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1053/beha.2002.0224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022279744
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1073/pnas.050397097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033490993
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1073/pnas.082099299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037994416
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1073/pnas.091062498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631710
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1073/pnas.92.22.10282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052473168
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1073/pnas.97.1.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048892448
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/bioinformatics/18.8.1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010290016
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/bioinformatics/btg424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001012898
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/bioinformatics/bth473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016017100
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/hmg/9.5.757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039473658
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/jnen/63.3.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029289713
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1109/72.159069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218286
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1109/tnn.2004.824261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716682
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1111/j.1349-7006.2002.tb01225.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011608055
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1200/jco.2005.01.5479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001500983
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1252/jcej.38.763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064517280
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1252/jcej.39.767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064517452
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1252/kakoronbunshu.25.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021167796
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1263/jbb.101.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050780800
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1263/jbb.102.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045729151
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1371/journal.pmed.0030047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039127082
281 rdf:type schema:CreativeWork
282 https://doi.org/10.3892/ijo.21.4.895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071514796
283 rdf:type schema:CreativeWork
284 https://doi.org/10.3892/ijo.28.2.375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071515928
285 rdf:type schema:CreativeWork
286 https://www.grid.ac/institutes/grid.263171.0 schema:alternateName Sapporo Medical University
287 schema:name Department of Surgical Pathology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, 060-8543, Sapporo, Japan
288 Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.272242.3 schema:alternateName National Cancer Centre
291 schema:name Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
292 Genetics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji Chuo-ku, 104-0045, Tokyo, Japan
293 Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
294 Research Fellow of the Japanese Society for the Promotion of Science (JSPS), Japan
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
297 schema:name Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
298 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...