UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-08-07

AUTHORS

Catherine Lozupone, Micah Hamady, Rob Knight

ABSTRACT

BackgroundMoving beyond pairwise significance tests to compare many microbial communities simultaneously is critical for understanding large-scale trends in microbial ecology and community assembly. Techniques that allow microbial communities to be compared in a phylogenetic context are rapidly gaining acceptance, but the widespread application of these techniques has been hindered by the difficulty of performing the analyses.ResultsWe introduce UniFrac, a web application available at http://bmf.colorado.edu/unifrac, that allows several phylogenetic tests for differences among communities to be easily applied and interpreted. We demonstrate the use of UniFrac to cluster multiple environments, and to test which environments are significantly different. We show that analysis of previously published sequences from the Columbia river, its estuary, and the adjacent coastal ocean using the UniFrac interface provided insights that were not apparent from the initial data analysis, which used other commonly employed techniques to compare the communities.ConclusionUniFrac provides easy access to powerful multivariate techniques for comparing microbial communities in a phylogenetic context. We thus expect that it will provide a completely new picture of many microbial interactions and processes in both environmental and medical contexts. More... »

PAGES

371

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-371

DOI

http://dx.doi.org/10.1186/1471-2105-7-371

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034771775

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16893466


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lozupone", 
        "givenName": "Catherine", 
        "id": "sg:person.0672337357.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Colorado, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Computer Science, University of Colorado, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamady", 
        "givenName": "Micah", 
        "id": "sg:person.0670603012.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670603012.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, University of Colorado, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Colorado, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knight", 
        "givenName": "Rob", 
        "id": "sg:person.016311745377.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-7-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047071659", 
          "https://doi.org/10.1186/1471-2105-7-57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040413794", 
          "https://doi.org/10.1186/1471-2105-5-113"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-08-07", 
    "datePublishedReg": "2006-08-07", 
    "description": "BackgroundMoving beyond pairwise significance tests to compare many microbial communities simultaneously is critical for understanding large-scale trends in microbial ecology and community assembly. Techniques that allow microbial communities to be compared in a phylogenetic context are rapidly gaining acceptance, but the widespread application of these techniques has been hindered by the difficulty of performing the analyses.ResultsWe introduce UniFrac, a web application available at http://bmf.colorado.edu/unifrac, that allows several phylogenetic tests for differences among communities to be easily applied and interpreted. We demonstrate the use of UniFrac to cluster multiple environments, and to test which environments are significantly different. We show that analysis of previously published sequences from the Columbia river, its estuary, and the adjacent coastal ocean using the UniFrac interface provided insights that were not apparent from the initial data analysis, which used other commonly employed techniques to compare the communities.ConclusionUniFrac provides easy access to powerful multivariate techniques for comparing microbial communities in a phylogenetic context. We thus expect that it will provide a completely new picture of many microbial interactions and processes in both environmental and medical contexts.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-7-371", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2684042", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2684070", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "phylogenetic context", 
      "microbial communities", 
      "microbial community diversity", 
      "community assembly", 
      "phylogenetic tests", 
      "microbial ecology", 
      "microbial interactions", 
      "community diversity", 
      "UniFrac", 
      "multiple environments", 
      "powerful multivariate technique", 
      "Columbia River", 
      "adjacent coastal ocean", 
      "ecology", 
      "large-scale trends", 
      "diversity", 
      "online tool", 
      "community", 
      "sequence", 
      "coastal ocean", 
      "assembly", 
      "multivariate techniques", 
      "estuary", 
      "insights", 
      "River", 
      "new picture", 
      "analysis", 
      "environment", 
      "interaction", 
      "Ocean", 
      "widespread application", 
      "context", 
      "process", 
      "initial data analysis", 
      "tool", 
      "differences", 
      "data analysis", 
      "easy access", 
      "significance tests", 
      "applications", 
      "technique", 
      "use", 
      "medical context", 
      "picture", 
      "web application", 
      "trends", 
      "interface", 
      "test", 
      "access", 
      "difficulties", 
      "acceptance"
    ], 
    "name": "UniFrac \u2013 An online tool for comparing microbial community diversity in a phylogenetic context", 
    "pagination": "371", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034771775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-371"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16893466"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-371", 
      "https://app.dimensions.ai/details/publication/pub.1034771775"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_409.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-7-371"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-371'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-371'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-371'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-371'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      87 URIs      77 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-371 schema:about N126fc97fb82647049b5bcbc86198f812
2 N203c507704be46b986447c5680f2ae33
3 N22d8e80e953d42dba87a3d20fe0e5e65
4 N31355a2b3c6e486aa934926e9368054d
5 N369a4fe0985245e69783c3149bdbb01b
6 N5cd405d97696459683f6354325bc8a42
7 N7815c42181ec479e973665fc96311988
8 N8c632a3452434845aa5b2b90b97ee5bc
9 Nd383d3933e96454dbd51d93390d77fa9
10 anzsrc-for:06
11 anzsrc-for:0605
12 schema:author Nebb411a0e8f3449ba335f3f1f8815908
13 schema:citation sg:pub.10.1186/1471-2105-5-113
14 sg:pub.10.1186/1471-2105-7-57
15 schema:datePublished 2006-08-07
16 schema:datePublishedReg 2006-08-07
17 schema:description BackgroundMoving beyond pairwise significance tests to compare many microbial communities simultaneously is critical for understanding large-scale trends in microbial ecology and community assembly. Techniques that allow microbial communities to be compared in a phylogenetic context are rapidly gaining acceptance, but the widespread application of these techniques has been hindered by the difficulty of performing the analyses.ResultsWe introduce UniFrac, a web application available at http://bmf.colorado.edu/unifrac, that allows several phylogenetic tests for differences among communities to be easily applied and interpreted. We demonstrate the use of UniFrac to cluster multiple environments, and to test which environments are significantly different. We show that analysis of previously published sequences from the Columbia river, its estuary, and the adjacent coastal ocean using the UniFrac interface provided insights that were not apparent from the initial data analysis, which used other commonly employed techniques to compare the communities.ConclusionUniFrac provides easy access to powerful multivariate techniques for comparing microbial communities in a phylogenetic context. We thus expect that it will provide a completely new picture of many microbial interactions and processes in both environmental and medical contexts.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N2414244b5547420d94df321a923f8d05
21 Nacaa19a09be24b92b7ffa68a337c7031
22 sg:journal.1023786
23 schema:keywords Columbia River
24 Ocean
25 River
26 UniFrac
27 acceptance
28 access
29 adjacent coastal ocean
30 analysis
31 applications
32 assembly
33 coastal ocean
34 community
35 community assembly
36 community diversity
37 context
38 data analysis
39 differences
40 difficulties
41 diversity
42 easy access
43 ecology
44 environment
45 estuary
46 initial data analysis
47 insights
48 interaction
49 interface
50 large-scale trends
51 medical context
52 microbial communities
53 microbial community diversity
54 microbial ecology
55 microbial interactions
56 multiple environments
57 multivariate techniques
58 new picture
59 online tool
60 phylogenetic context
61 phylogenetic tests
62 picture
63 powerful multivariate technique
64 process
65 sequence
66 significance tests
67 technique
68 test
69 tool
70 trends
71 use
72 web application
73 widespread application
74 schema:name UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context
75 schema:pagination 371
76 schema:productId N0a8fa309b0c4435d912420e1c6a0bcd5
77 Nbed9881f614a43bbbdc889c8c3f1f7f9
78 Ncb89a85097f542d893ba46bc5c671007
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034771775
80 https://doi.org/10.1186/1471-2105-7-371
81 schema:sdDatePublished 2022-11-24T20:51
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N5610db9034a644c994b405bdff87de2b
84 schema:url https://doi.org/10.1186/1471-2105-7-371
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0a8fa309b0c4435d912420e1c6a0bcd5 schema:name dimensions_id
89 schema:value pub.1034771775
90 rdf:type schema:PropertyValue
91 N126fc97fb82647049b5bcbc86198f812 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Bacteria
93 rdf:type schema:DefinedTerm
94 N203c507704be46b986447c5680f2ae33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Genetic Variation
96 rdf:type schema:DefinedTerm
97 N22d8e80e953d42dba87a3d20fe0e5e65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Computational Biology
99 rdf:type schema:DefinedTerm
100 N2414244b5547420d94df321a923f8d05 schema:volumeNumber 7
101 rdf:type schema:PublicationVolume
102 N31355a2b3c6e486aa934926e9368054d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Phylogeny
104 rdf:type schema:DefinedTerm
105 N369a4fe0985245e69783c3149bdbb01b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Environmental Microbiology
107 rdf:type schema:DefinedTerm
108 N5610db9034a644c994b405bdff87de2b schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N5cd405d97696459683f6354325bc8a42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name RNA, Ribosomal, 16S
112 rdf:type schema:DefinedTerm
113 N7815c42181ec479e973665fc96311988 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Internet
115 rdf:type schema:DefinedTerm
116 N8c632a3452434845aa5b2b90b97ee5bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Ecosystem
118 rdf:type schema:DefinedTerm
119 Nacaa19a09be24b92b7ffa68a337c7031 schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 Nbed9881f614a43bbbdc889c8c3f1f7f9 schema:name pubmed_id
122 schema:value 16893466
123 rdf:type schema:PropertyValue
124 Nc029b7e5d847493dbbc046ab160d3b5b rdf:first sg:person.0670603012.94
125 rdf:rest Ne378f2404260489fb17b508fc1edb42f
126 Ncb89a85097f542d893ba46bc5c671007 schema:name doi
127 schema:value 10.1186/1471-2105-7-371
128 rdf:type schema:PropertyValue
129 Nd383d3933e96454dbd51d93390d77fa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Cluster Analysis
131 rdf:type schema:DefinedTerm
132 Ne378f2404260489fb17b508fc1edb42f rdf:first sg:person.016311745377.96
133 rdf:rest rdf:nil
134 Nebb411a0e8f3449ba335f3f1f8815908 rdf:first sg:person.0672337357.81
135 rdf:rest Nc029b7e5d847493dbbc046ab160d3b5b
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
140 schema:name Microbiology
141 rdf:type schema:DefinedTerm
142 sg:grant.2684042 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-371
143 rdf:type schema:MonetaryGrant
144 sg:grant.2684070 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-371
145 rdf:type schema:MonetaryGrant
146 sg:journal.1023786 schema:issn 1471-2105
147 schema:name BMC Bioinformatics
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266190.a
151 schema:familyName Knight
152 schema:givenName Rob
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
154 rdf:type schema:Person
155 sg:person.0670603012.94 schema:affiliation grid-institutes:grid.266190.a
156 schema:familyName Hamady
157 schema:givenName Micah
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670603012.94
159 rdf:type schema:Person
160 sg:person.0672337357.81 schema:affiliation grid-institutes:grid.266190.a
161 schema:familyName Lozupone
162 schema:givenName Catherine
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81
164 rdf:type schema:Person
165 sg:pub.10.1186/1471-2105-5-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040413794
166 https://doi.org/10.1186/1471-2105-5-113
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/1471-2105-7-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047071659
169 https://doi.org/10.1186/1471-2105-7-57
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.266190.a schema:alternateName Department of Chemistry and Biochemistry, University of Colorado, 80309, Boulder, CO, USA
172 Department of Computer Science, University of Colorado, 80309, Boulder, CO, USA
173 Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 80309, Boulder, CO, USA
174 schema:name Department of Chemistry and Biochemistry, University of Colorado, 80309, Boulder, CO, USA
175 Department of Computer Science, University of Colorado, 80309, Boulder, CO, USA
176 Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 80309, Boulder, CO, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...