Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Michał J Okoniewski, Crispin J Miller

ABSTRACT

BACKGROUND: Microarrays measure the binding of nucleotide sequences to a set of sequence specific probes. This information is combined with annotation specifying the relationship between probes and targets and used to make inferences about transcript- and, ultimately, gene expression. In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple probes can target a single sequence. These 'multiply targeted' probes can result in non-independence between measured expression levels. RESULTS: An analysis of these relationships for Affymetrix arrays considered both the extent and influence of exact matches between probe and transcript sequences. For the popular HGU133A array, approximately half of the probesets were found to interact in this way. Both real and simulated expression datasets were used to examine how these effects influenced the expression signal. It was found not only to lead to increased signal strength for the affected probesets, but the major effect is to significantly increase their correlation, even in situations when only a single probe from a probeset was involved. By building a network of probe-probeset-transcript relationships, it is possible to identify families of interacting probesets. More than 10% of the families contain members annotated to different genes or even different Unigene clusters. Within a family, a mixture of genuine biological and artefactual correlations can occur. CONCLUSION: Multiple targeting is not only prevalent, but also significant. The ability of probesets to hybridize to more than one gene product can lead to false positives when analysing gene expression. Comprehensive annotation describing multiple targeting is required when interpreting array data. More... »

PAGES

276

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-276

DOI

http://dx.doi.org/10.1186/1471-2105-7-276

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031404240

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16749918


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Probes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Failure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Failure Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Situ Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Paterson Institute For Cancer Research, Christie Hospital site, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okoniewski", 
        "givenName": "Micha\u0142 J", 
        "id": "sg:person.01364364513.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364364513.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Paterson Institute For Cancer Research, Christie Hospital site, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Crispin J", 
        "id": "sg:person.01076316344.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076316344.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000249141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000249141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400782101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002732260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1860604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002868769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003878496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014909687", 
          "https://doi.org/10.1186/1471-2105-6-214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014909687", 
          "https://doi.org/10.1186/1471-2105-6-214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014919312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018638362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019475208", 
          "https://doi.org/10.1186/1471-2105-4-27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.220392197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019479023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00066.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021974921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022253796", 
          "https://doi.org/10.1186/1471-2105-5-111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1387-2656(02)08003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023851674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027348522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/2.4.350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030369265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1087447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031047936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.04.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033716325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038073766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039175850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039175850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040526112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040530060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043526555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043605162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048070619", 
          "https://doi.org/10.1038/ng1384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048070619", 
          "https://doi.org/10.1038/ng1384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gnh071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049636235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053069799", 
          "https://doi.org/10.1186/1471-2105-6-107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000000683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/phgs.4.1.41.22581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067591525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670449", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076866843", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Microarrays measure the binding of nucleotide sequences to a set of sequence specific probes. This information is combined with annotation specifying the relationship between probes and targets and used to make inferences about transcript- and, ultimately, gene expression. In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple probes can target a single sequence. These 'multiply targeted' probes can result in non-independence between measured expression levels.\nRESULTS: An analysis of these relationships for Affymetrix arrays considered both the extent and influence of exact matches between probe and transcript sequences. For the popular HGU133A array, approximately half of the probesets were found to interact in this way. Both real and simulated expression datasets were used to examine how these effects influenced the expression signal. It was found not only to lead to increased signal strength for the affected probesets, but the major effect is to significantly increase their correlation, even in situations when only a single probe from a probeset was involved. By building a network of probe-probeset-transcript relationships, it is possible to identify families of interacting probesets. More than 10% of the families contain members annotated to different genes or even different Unigene clusters. Within a family, a mixture of genuine biological and artefactual correlations can occur.\nCONCLUSION: Multiple targeting is not only prevalent, but also significant. The ability of probesets to hybridize to more than one gene product can lead to false positives when analysing gene expression. Comprehensive annotation describing multiple targeting is required when interpreting array data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-276", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations", 
    "pagination": "276", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "959a6860d41274b79a5ca9704e0d7d9e61f7650e8aa548f7bb9f0fc6142c6d79"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16749918"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-276"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031404240"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-276", 
      "https://app.dimensions.ai/details/publication/pub.1031404240"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-7-276"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-276'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-276'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-276'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-276'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      74 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-276 schema:about N19116ba53ad24c08b3de47550819c871
2 N1ebdf12538aa46dd947d8c3af6877d1b
3 N53a3609fd4ae4c3c905a44f9b5d13071
4 N5fff582487fb4e9798c5543714558948
5 N7464aae12ba34463a48c411861e34db4
6 N8466e98db7044f81ad6d49bef14c3614
7 N85d3a6fb056649dcac0984024675019f
8 N8d0655e6da4749b5b05a9144ea129576
9 Nb4c7d80353de4cd4a0ed655d2256669c
10 Nc31093731b6c47c38edebdceb811d870
11 Nca3427777c9a4cc280096630a69dd025
12 Nd3761ed72a4b4d9cad5a639ee57bc863
13 Ndd4e04355ab143c7859d58340be6eee5
14 Ne100d31853c84e66b98434e76184704e
15 Nef1e350eabb24eaea29da36d3070c3e1
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author N18aeca0e2fd346c881b590758aa6c694
19 schema:citation sg:pub.10.1038/ng1384
20 sg:pub.10.1186/1471-2105-4-27
21 sg:pub.10.1186/1471-2105-5-111
22 sg:pub.10.1186/1471-2105-6-107
23 sg:pub.10.1186/1471-2105-6-214
24 sg:pub.10.1186/gb-2004-5-10-r80
25 https://app.dimensions.ai/details/publication/pub.1074670449
26 https://app.dimensions.ai/details/publication/pub.1076866843
27 https://doi.org/10.1016/j.jmb.2004.04.047
28 https://doi.org/10.1016/s1387-2656(02)08003-1
29 https://doi.org/10.1073/pnas.0400782101
30 https://doi.org/10.1073/pnas.220392197
31 https://doi.org/10.1093/bib/2.4.350
32 https://doi.org/10.1093/bioinformatics/btg405
33 https://doi.org/10.1093/bioinformatics/bti359
34 https://doi.org/10.1093/bioinformatics/bti605
35 https://doi.org/10.1093/nar/gkg121
36 https://doi.org/10.1093/nar/gkh036
37 https://doi.org/10.1093/nar/gki025
38 https://doi.org/10.1093/nar/gki783
39 https://doi.org/10.1093/nar/gng015
40 https://doi.org/10.1093/nar/gnh071
41 https://doi.org/10.1093/nar/gni027
42 https://doi.org/10.1093/nar/gni082
43 https://doi.org/10.1093/nar/gni179
44 https://doi.org/10.1101/gr.1860604
45 https://doi.org/10.1126/science.1087447
46 https://doi.org/10.1152/physiolgenomics.00066.2004
47 https://doi.org/10.1198/016214504000000683
48 https://doi.org/10.1517/phgs.4.1.41.22581
49 schema:datePublished 2006-12
50 schema:datePublishedReg 2006-12-01
51 schema:description BACKGROUND: Microarrays measure the binding of nucleotide sequences to a set of sequence specific probes. This information is combined with annotation specifying the relationship between probes and targets and used to make inferences about transcript- and, ultimately, gene expression. In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple probes can target a single sequence. These 'multiply targeted' probes can result in non-independence between measured expression levels. RESULTS: An analysis of these relationships for Affymetrix arrays considered both the extent and influence of exact matches between probe and transcript sequences. For the popular HGU133A array, approximately half of the probesets were found to interact in this way. Both real and simulated expression datasets were used to examine how these effects influenced the expression signal. It was found not only to lead to increased signal strength for the affected probesets, but the major effect is to significantly increase their correlation, even in situations when only a single probe from a probeset was involved. By building a network of probe-probeset-transcript relationships, it is possible to identify families of interacting probesets. More than 10% of the families contain members annotated to different genes or even different Unigene clusters. Within a family, a mixture of genuine biological and artefactual correlations can occur. CONCLUSION: Multiple targeting is not only prevalent, but also significant. The ability of probesets to hybridize to more than one gene product can lead to false positives when analysing gene expression. Comprehensive annotation describing multiple targeting is required when interpreting array data.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N2818bcab5981484da54050c39c10532e
56 N621f2eb9d8264ee3b770bbfa9815decb
57 sg:journal.1023786
58 schema:name Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations
59 schema:pagination 276
60 schema:productId N47d75978800b4aba8b6192200927bd60
61 N5a49f174a071449fb9275aa1080438b4
62 N84a2aa19c6a84e2399d49bc68169f5e1
63 Nbec11a9fdc6c4c9fb31f4f893b7389b5
64 Nf6810f28e9c9491e9c91bad751741f1f
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031404240
66 https://doi.org/10.1186/1471-2105-7-276
67 schema:sdDatePublished 2019-04-10T16:40
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nae314d7e351842dbb4ca094f40cb9a1b
70 schema:url http://link.springer.com/10.1186%2F1471-2105-7-276
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N18aeca0e2fd346c881b590758aa6c694 rdf:first sg:person.01364364513.44
75 rdf:rest Nc35d1ba6e8074109b021e47d70414159
76 N19116ba53ad24c08b3de47550819c871 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Oligonucleotide Array Sequence Analysis
78 rdf:type schema:DefinedTerm
79 N1ebdf12538aa46dd947d8c3af6877d1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Computer Simulation
81 rdf:type schema:DefinedTerm
82 N2818bcab5981484da54050c39c10532e schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N47d75978800b4aba8b6192200927bd60 schema:name dimensions_id
85 schema:value pub.1031404240
86 rdf:type schema:PropertyValue
87 N53a3609fd4ae4c3c905a44f9b5d13071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name In Situ Hybridization
89 rdf:type schema:DefinedTerm
90 N5a49f174a071449fb9275aa1080438b4 schema:name readcube_id
91 schema:value 959a6860d41274b79a5ca9704e0d7d9e61f7650e8aa548f7bb9f0fc6142c6d79
92 rdf:type schema:PropertyValue
93 N5fff582487fb4e9798c5543714558948 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Equipment Design
95 rdf:type schema:DefinedTerm
96 N621f2eb9d8264ee3b770bbfa9815decb schema:volumeNumber 7
97 rdf:type schema:PublicationVolume
98 N7464aae12ba34463a48c411861e34db4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Reproducibility of Results
100 rdf:type schema:DefinedTerm
101 N8466e98db7044f81ad6d49bef14c3614 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Equipment Failure
103 rdf:type schema:DefinedTerm
104 N84a2aa19c6a84e2399d49bc68169f5e1 schema:name nlm_unique_id
105 schema:value 100965194
106 rdf:type schema:PropertyValue
107 N85d3a6fb056649dcac0984024675019f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Gene Expression Profiling
109 rdf:type schema:DefinedTerm
110 N8d0655e6da4749b5b05a9144ea129576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name DNA Probes
112 rdf:type schema:DefinedTerm
113 Nae314d7e351842dbb4ca094f40cb9a1b schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nb4c7d80353de4cd4a0ed655d2256669c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Models, Genetic
117 rdf:type schema:DefinedTerm
118 Nbec11a9fdc6c4c9fb31f4f893b7389b5 schema:name doi
119 schema:value 10.1186/1471-2105-7-276
120 rdf:type schema:PropertyValue
121 Nc31093731b6c47c38edebdceb811d870 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Sensitivity and Specificity
123 rdf:type schema:DefinedTerm
124 Nc35d1ba6e8074109b021e47d70414159 rdf:first sg:person.01076316344.61
125 rdf:rest rdf:nil
126 Nca3427777c9a4cc280096630a69dd025 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Artifacts
128 rdf:type schema:DefinedTerm
129 Nd3761ed72a4b4d9cad5a639ee57bc863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Models, Statistical
131 rdf:type schema:DefinedTerm
132 Ndd4e04355ab143c7859d58340be6eee5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Statistics as Topic
134 rdf:type schema:DefinedTerm
135 Ne100d31853c84e66b98434e76184704e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Equipment Failure Analysis
137 rdf:type schema:DefinedTerm
138 Nef1e350eabb24eaea29da36d3070c3e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Data Interpretation, Statistical
140 rdf:type schema:DefinedTerm
141 Nf6810f28e9c9491e9c91bad751741f1f schema:name pubmed_id
142 schema:value 16749918
143 rdf:type schema:PropertyValue
144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biological Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
148 schema:name Genetics
149 rdf:type schema:DefinedTerm
150 sg:journal.1023786 schema:issn 1471-2105
151 schema:name BMC Bioinformatics
152 rdf:type schema:Periodical
153 sg:person.01076316344.61 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
154 schema:familyName Miller
155 schema:givenName Crispin J
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076316344.61
157 rdf:type schema:Person
158 sg:person.01364364513.44 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
159 schema:familyName Okoniewski
160 schema:givenName Michał J
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364364513.44
162 rdf:type schema:Person
163 sg:pub.10.1038/ng1384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048070619
164 https://doi.org/10.1038/ng1384
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2105-4-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019475208
167 https://doi.org/10.1186/1471-2105-4-27
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2105-5-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022253796
170 https://doi.org/10.1186/1471-2105-5-111
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2105-6-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069799
173 https://doi.org/10.1186/1471-2105-6-107
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2105-6-214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014909687
176 https://doi.org/10.1186/1471-2105-6-214
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
179 https://doi.org/10.1186/gb-2004-5-10-r80
180 rdf:type schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1074670449 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1076866843 schema:CreativeWork
183 https://doi.org/10.1016/j.jmb.2004.04.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033716325
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s1387-2656(02)08003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023851674
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.0400782101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002732260
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.220392197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019479023
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bib/2.4.350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030369265
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btg405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003878496
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/bti359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014919312
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/bti605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000249141
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/nar/gkg121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043605162
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/nar/gkh036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040530060
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/nar/gki025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038073766
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/nar/gki783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039175850
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/nar/gng015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018638362
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/gnh071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049636235
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/nar/gni027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043526555
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/nar/gni082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027348522
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gni179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040526112
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1101/gr.1860604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002868769
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.1087447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031047936
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1152/physiolgenomics.00066.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021974921
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1198/016214504000000683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198205
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1517/phgs.4.1.41.22581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067591525
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
228 schema:name Paterson Institute For Cancer Research, Christie Hospital site, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...