A hidden Markov model approach for determining expression from genomic tiling micro arrays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Kasper Munch, Paul P Gardner, Peter Arctander, Anders Krogh

ABSTRACT

BACKGROUND: Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. RESULTS: We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM) is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005) tiling array experiments on ten Human chromosomes. Results can be downloaded and viewed from our web site. CONCLUSION: The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity. More... »

PAGES

239

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-239

DOI

http://dx.doi.org/10.1186/1471-2105-7-239

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015800611

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16672042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Situ Hybridization, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Elements, Transcriptional", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Bioinformatics Centre, Institute of Molecular Biology and Physiology, University of Copenhagen, 2100, Universitetsparken 15Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Munch", 
        "givenName": "Kasper", 
        "id": "sg:person.0752504260.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752504260.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Molecular Evolution Group, Institute of Molecular Biology and Physiology, University of Copenhagen, 2100, Universitetsparken 15Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gardner", 
        "givenName": "Paul P", 
        "id": "sg:person.01224632205.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224632205.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Molecular Evolution Group, Institute of Molecular Biology and Physiology, University of Copenhagen, 2100, Universitetsparken 15Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arctander", 
        "givenName": "Peter", 
        "id": "sg:person.01370124303.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370124303.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Bioinformatics Centre, Institute of Molecular Biology and Physiology, University of Copenhagen, 2100, Universitetsparken 15Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krogh", 
        "givenName": "Anders", 
        "id": "sg:person.01057515665.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057515665.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001695810", 
          "https://doi.org/10.1038/ng1307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001695810", 
          "https://doi.org/10.1038/ng1307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001881353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1055203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003396532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.011906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007159879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.011906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007159879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti1046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008170149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010624035", 
          "https://doi.org/10.1038/82367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010624035", 
          "https://doi.org/10.1038/82367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011028896", 
          "https://doi.org/10.1038/nature04029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011028896", 
          "https://doi.org/10.1038/nature04029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011853799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012203647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2004.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028330189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0408203102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033633670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2005.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035056054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2005.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035056054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2005.02470.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035891001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/974614.974628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036147073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/974614.974628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036147073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(99)01882-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038524759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2004.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043230895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046921907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3715005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048048079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2094104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050487471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051221172", 
          "https://doi.org/10.1186/1471-2105-4-50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051221172", 
          "https://doi.org/10.1186/1471-2105-4-50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052847323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053314410", 
          "https://doi.org/10.1038/35057141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053314410", 
          "https://doi.org/10.1038/35057141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.18626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1068597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1088305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1101312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062450881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000000683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083156239", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion.\nRESULTS: We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM) is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005) tiling array experiments on ten Human chromosomes. Results can be downloaded and viewed from our web site.\nCONCLUSION: The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-239", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A hidden Markov model approach for determining expression from genomic tiling micro arrays", 
    "pagination": "239", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b49479107a0c87c8c03d9b7336a31683e06eb9ae502837a15ad7848ab44239f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16672042"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-239"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015800611"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-239", 
      "https://app.dimensions.ai/details/publication/pub.1015800611"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-7-239"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-239'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-239'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-239'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-239'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      70 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-239 schema:about N028add3926084c8cb3584cc471916e82
2 N148333ff2e014c18bf89130bda1a5093
3 N1ea2c8cc50e64353bd6cc6e6ed9b3c3a
4 N2f54b6780516442ca378195018d9eda6
5 N68da0b81ff8a4216af0fd6b787ac91e9
6 N69bf810af7f04a0fbeedd66db2abb16a
7 N89d6c8308b504ed5b2d56d8ad2dd7ba9
8 N9386a327edef4c5e897d44bce2cdc916
9 N9eb5774dd0c047b98b275540d7cf3ce9
10 Nc4d716323d494bcca89de54285cebe28
11 Nd44bcde97bcd4127833f4c0bba3a0feb
12 Ne22eadddabf1434d80e98c179c641f03
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author Ne1e9a4ed5bc4425a9f6c8b17bb885352
16 schema:citation sg:pub.10.1038/35057141
17 sg:pub.10.1038/82367
18 sg:pub.10.1038/nature04029
19 sg:pub.10.1038/ng1307
20 sg:pub.10.1186/1471-2105-4-50
21 https://app.dimensions.ai/details/publication/pub.1083156239
22 https://doi.org/10.1016/j.tig.2004.12.009
23 https://doi.org/10.1016/j.tig.2005.06.007
24 https://doi.org/10.1016/j.ygeno.2004.10.005
25 https://doi.org/10.1016/s0168-9525(99)01882-x
26 https://doi.org/10.1073/pnas.0408203102
27 https://doi.org/10.1093/bioinformatics/19.2.185
28 https://doi.org/10.1093/bioinformatics/bti1046
29 https://doi.org/10.1093/nar/gkg129
30 https://doi.org/10.1093/nar/gkh023
31 https://doi.org/10.1093/nar/gki138
32 https://doi.org/10.1101/gad.1055203
33 https://doi.org/10.1101/gr.2094104
34 https://doi.org/10.1101/gr.3715005
35 https://doi.org/10.1103/physreve.68.011906
36 https://doi.org/10.1109/5.18626
37 https://doi.org/10.1111/j.1365-313x.2005.02470.x
38 https://doi.org/10.1126/science.1068597
39 https://doi.org/10.1126/science.1088305
40 https://doi.org/10.1126/science.1101312
41 https://doi.org/10.1126/science.1108625
42 https://doi.org/10.1126/science.1112014
43 https://doi.org/10.1145/974614.974628
44 https://doi.org/10.1198/016214504000000683
45 schema:datePublished 2006-12
46 schema:datePublishedReg 2006-12-01
47 schema:description BACKGROUND: Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. RESULTS: We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM) is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005) tiling array experiments on ten Human chromosomes. Results can be downloaded and viewed from our web site. CONCLUSION: The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N8b3c0a44fa18499981bce651f9360f36
52 Na25222d721ee4af5896b920e29926543
53 sg:journal.1023786
54 schema:name A hidden Markov model approach for determining expression from genomic tiling micro arrays
55 schema:pagination 239
56 schema:productId N13d6e73f81364b598cbfe595eb2f568a
57 N9bb3094e43c74c12acba20a5455d63bf
58 Nd0276209b1ae40748f94e91c448fc134
59 Nd3848b0dd26c46888e164334c570053a
60 Ne2bf6918c23945e7a974cf06cb0b0845
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015800611
62 https://doi.org/10.1186/1471-2105-7-239
63 schema:sdDatePublished 2019-04-11T01:05
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nf6e968a44ea74ba590b4e3a4323a3fb0
66 schema:url http://link.springer.com/10.1186%2F1471-2105-7-239
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N028add3926084c8cb3584cc471916e82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Artificial Intelligence
72 rdf:type schema:DefinedTerm
73 N13d6e73f81364b598cbfe595eb2f568a schema:name doi
74 schema:value 10.1186/1471-2105-7-239
75 rdf:type schema:PropertyValue
76 N148333ff2e014c18bf89130bda1a5093 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Computer Simulation
78 rdf:type schema:DefinedTerm
79 N1ea2c8cc50e64353bd6cc6e6ed9b3c3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name In Situ Hybridization, Fluorescence
81 rdf:type schema:DefinedTerm
82 N2f54b6780516442ca378195018d9eda6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Models, Statistical
84 rdf:type schema:DefinedTerm
85 N68da0b81ff8a4216af0fd6b787ac91e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Pattern Recognition, Automated
87 rdf:type schema:DefinedTerm
88 N69bf810af7f04a0fbeedd66db2abb16a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Models, Genetic
90 rdf:type schema:DefinedTerm
91 N89d6c8308b504ed5b2d56d8ad2dd7ba9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Chromosome Mapping
93 rdf:type schema:DefinedTerm
94 N8b3c0a44fa18499981bce651f9360f36 schema:volumeNumber 7
95 rdf:type schema:PublicationVolume
96 N9386a327edef4c5e897d44bce2cdc916 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Oligonucleotide Array Sequence Analysis
98 rdf:type schema:DefinedTerm
99 N9bb3094e43c74c12acba20a5455d63bf schema:name dimensions_id
100 schema:value pub.1015800611
101 rdf:type schema:PropertyValue
102 N9eb5774dd0c047b98b275540d7cf3ce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Gene Expression Profiling
104 rdf:type schema:DefinedTerm
105 Na25222d721ee4af5896b920e29926543 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 Nc4d716323d494bcca89de54285cebe28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Markov Chains
109 rdf:type schema:DefinedTerm
110 Nd0276209b1ae40748f94e91c448fc134 schema:name nlm_unique_id
111 schema:value 100965194
112 rdf:type schema:PropertyValue
113 Nd3848b0dd26c46888e164334c570053a schema:name readcube_id
114 schema:value 4b49479107a0c87c8c03d9b7336a31683e06eb9ae502837a15ad7848ab44239f
115 rdf:type schema:PropertyValue
116 Nd44bcde97bcd4127833f4c0bba3a0feb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Regulatory Elements, Transcriptional
118 rdf:type schema:DefinedTerm
119 Nd6eb849428024efe82b69dcc0271e904 rdf:first sg:person.01370124303.36
120 rdf:rest Nde1fe0bf6f174382909d475847ec0cbf
121 Nde1fe0bf6f174382909d475847ec0cbf rdf:first sg:person.01057515665.52
122 rdf:rest rdf:nil
123 Ne1e9a4ed5bc4425a9f6c8b17bb885352 rdf:first sg:person.0752504260.51
124 rdf:rest Neb3e550a7dbc4f4197485e0193b29dba
125 Ne22eadddabf1434d80e98c179c641f03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Algorithms
127 rdf:type schema:DefinedTerm
128 Ne2bf6918c23945e7a974cf06cb0b0845 schema:name pubmed_id
129 schema:value 16672042
130 rdf:type schema:PropertyValue
131 Neb3e550a7dbc4f4197485e0193b29dba rdf:first sg:person.01224632205.56
132 rdf:rest Nd6eb849428024efe82b69dcc0271e904
133 Nf6e968a44ea74ba590b4e3a4323a3fb0 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
139 schema:name Genetics
140 rdf:type schema:DefinedTerm
141 sg:journal.1023786 schema:issn 1471-2105
142 schema:name BMC Bioinformatics
143 rdf:type schema:Periodical
144 sg:person.01057515665.52 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
145 schema:familyName Krogh
146 schema:givenName Anders
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057515665.52
148 rdf:type schema:Person
149 sg:person.01224632205.56 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
150 schema:familyName Gardner
151 schema:givenName Paul P
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224632205.56
153 rdf:type schema:Person
154 sg:person.01370124303.36 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
155 schema:familyName Arctander
156 schema:givenName Peter
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370124303.36
158 rdf:type schema:Person
159 sg:person.0752504260.51 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
160 schema:familyName Munch
161 schema:givenName Kasper
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752504260.51
163 rdf:type schema:Person
164 sg:pub.10.1038/35057141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053314410
165 https://doi.org/10.1038/35057141
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/82367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010624035
168 https://doi.org/10.1038/82367
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature04029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011028896
171 https://doi.org/10.1038/nature04029
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ng1307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001695810
174 https://doi.org/10.1038/ng1307
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1471-2105-4-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051221172
177 https://doi.org/10.1186/1471-2105-4-50
178 rdf:type schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1083156239 schema:CreativeWork
180 https://doi.org/10.1016/j.tig.2004.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028330189
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.tig.2005.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035056054
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ygeno.2004.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854579
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0168-9525(99)01882-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038524759
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.0408203102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033633670
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/bioinformatics/19.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011853799
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/bioinformatics/bti1046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008170149
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/nar/gkg129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012203647
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/nar/gkh023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001881353
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/nar/gki138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043230895
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1101/gad.1055203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003396532
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1101/gr.2094104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050487471
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1101/gr.3715005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048048079
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreve.68.011906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007159879
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1365-313x.2005.02470.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891001
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1068597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445839
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.1088305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448444
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.1101312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062450881
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.1108625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046921907
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.1112014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052847323
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1145/974614.974628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036147073
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1198/016214504000000683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198205
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
227 schema:name Bioinformatics Centre, Institute of Molecular Biology and Physiology, University of Copenhagen, 2100, Universitetsparken 15Copenhagen, Denmark
228 Molecular Evolution Group, Institute of Molecular Biology and Physiology, University of Copenhagen, 2100, Universitetsparken 15Copenhagen, Denmark
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...