STEM: a tool for the analysis of short time series gene expression data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-04-05

AUTHORS

Jason Ernst, Ziv Bar-Joseph

ABSTRACT

BackgroundTime series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.ResultsWe introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology.ConclusionThe unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem. More... »

PAGES

191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-191

DOI

http://dx.doi.org/10.1186/1471-2105-7-191

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023286996

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16597342


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ernst", 
        "givenName": "Jason", 
        "id": "sg:person.0720743120.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720743120.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bar-Joseph", 
        "givenName": "Ziv", 
        "id": "sg:person.0642257765.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642257765.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-6-168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047729779", 
          "https://doi.org/10.1186/1471-2105-6-168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028486092", 
          "https://doi.org/10.1186/1471-2105-6-232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04-05", 
    "datePublishedReg": "2006-04-05", 
    "description": "BackgroundTime series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3\u20138 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.ResultsWe introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology.ConclusionThe unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-7-191", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3054413", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2709166", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "short time series gene expression data", 
      "time series gene expression data", 
      "gene expression data", 
      "first software program", 
      "non-profit users", 
      "microarray gene expression data", 
      "dynamical biological processes", 
      "visualization capabilities", 
      "expression data", 
      "short time series data", 
      "time series data", 
      "microarray time series experiments", 
      "analysis tools", 
      "software program", 
      "expression analysis tools", 
      "such data", 
      "ontology", 
      "series data", 
      "users", 
      "download", 
      "tool", 
      "integration", 
      "unique challenges", 
      "microarray experiments", 
      "biological interpretation", 
      "time series experiments", 
      "data", 
      "implements", 
      "Gene Ontology", 
      "capability", 
      "analysis of data", 
      "experiments", 
      "gene expression analysis tools", 
      "miners", 
      "cost", 
      "limited availability", 
      "series experiments", 
      "challenges", 
      "significant portion", 
      "unique method", 
      "availability", 
      "method", 
      "opportunities", 
      "process", 
      "analysis", 
      "program", 
      "interpretation", 
      "cases", 
      "portion", 
      "series", 
      "biological processes", 
      "Short Time-series Expression Miner", 
      "microarray studies", 
      "study", 
      "time-series microarray gene expression data", 
      "biological materials", 
      "materials", 
      "stem"
    ], 
    "name": "STEM: a tool for the analysis of short time series gene expression data", 
    "pagination": "191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023286996"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-191"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16597342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-191", 
      "https://app.dimensions.ai/details/publication/pub.1023286996"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-7-191"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-191'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-191'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-191'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-191'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      100 URIs      86 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-191 schema:about N11d83d26f4d04701bd515ca39acdaec7
2 N6e01c452cc514caaba6181129b4a20d5
3 N80dda73189d741749a2610acfa271e90
4 Na2ddc681237e409483283f4c4a6ae5e3
5 Na42bb0d6e5484a6f8b6a925a3cf46753
6 Nddf24d5709a34cefa5dcc1f57ab1af7d
7 Ne881c23a79e642be9f4bfc6850685fe6
8 Nefd2455f04864e7ab0ebb69413d2a245
9 Nf2cd30717f0449fda3e24238c7cca66f
10 Nf561eb5aa6cf436ab41be8fd96296c68
11 Nfd2f47e17fec4190939476b048fbce00
12 anzsrc-for:01
13 anzsrc-for:0104
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N229a9129a7c34684b8d0ea84e2f08815
17 schema:citation sg:pub.10.1038/10343
18 sg:pub.10.1038/75556
19 sg:pub.10.1186/1471-2105-6-168
20 sg:pub.10.1186/1471-2105-6-232
21 schema:datePublished 2006-04-05
22 schema:datePublishedReg 2006-04-05
23 schema:description BackgroundTime series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.ResultsWe introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology.ConclusionThe unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf Nb19f5fb6801e4759a062490c18c93cd0
27 Nfd3987e87fb9447da11a774519e2ed63
28 sg:journal.1023786
29 schema:keywords Gene Ontology
30 Short Time-series Expression Miner
31 analysis
32 analysis of data
33 analysis tools
34 availability
35 biological interpretation
36 biological materials
37 biological processes
38 capability
39 cases
40 challenges
41 cost
42 data
43 download
44 dynamical biological processes
45 experiments
46 expression analysis tools
47 expression data
48 first software program
49 gene expression analysis tools
50 gene expression data
51 implements
52 integration
53 interpretation
54 limited availability
55 materials
56 method
57 microarray experiments
58 microarray gene expression data
59 microarray studies
60 microarray time series experiments
61 miners
62 non-profit users
63 ontology
64 opportunities
65 portion
66 process
67 program
68 series
69 series data
70 series experiments
71 short time series data
72 short time series gene expression data
73 significant portion
74 software program
75 stem
76 study
77 such data
78 time series data
79 time series experiments
80 time series gene expression data
81 time-series microarray gene expression data
82 tool
83 unique challenges
84 unique method
85 users
86 visualization capabilities
87 schema:name STEM: a tool for the analysis of short time series gene expression data
88 schema:pagination 191
89 schema:productId N01ed994781b5450187661342675b69ca
90 N31e52f2bb79e4fdc888651080d3a026f
91 Nd7c8f939c4e442b8bc9310196474dad5
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023286996
93 https://doi.org/10.1186/1471-2105-7-191
94 schema:sdDatePublished 2022-08-04T16:57
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N33e321e708f64483a024b95eeb486aaf
97 schema:url https://doi.org/10.1186/1471-2105-7-191
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N01ed994781b5450187661342675b69ca schema:name dimensions_id
102 schema:value pub.1023286996
103 rdf:type schema:PropertyValue
104 N11d83d26f4d04701bd515ca39acdaec7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Gene Expression Regulation
106 rdf:type schema:DefinedTerm
107 N229a9129a7c34684b8d0ea84e2f08815 rdf:first sg:person.0720743120.38
108 rdf:rest Ne9ff9951ffb14c7b8e946e09dfd983c5
109 N31e52f2bb79e4fdc888651080d3a026f schema:name doi
110 schema:value 10.1186/1471-2105-7-191
111 rdf:type schema:PropertyValue
112 N33e321e708f64483a024b95eeb486aaf schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N6e01c452cc514caaba6181129b4a20d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Pattern Recognition, Automated
116 rdf:type schema:DefinedTerm
117 N80dda73189d741749a2610acfa271e90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Oligonucleotide Array Sequence Analysis
119 rdf:type schema:DefinedTerm
120 Na2ddc681237e409483283f4c4a6ae5e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Time Factors
122 rdf:type schema:DefinedTerm
123 Na42bb0d6e5484a6f8b6a925a3cf46753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Gene Expression Profiling
125 rdf:type schema:DefinedTerm
126 Nb19f5fb6801e4759a062490c18c93cd0 schema:volumeNumber 7
127 rdf:type schema:PublicationVolume
128 Nd7c8f939c4e442b8bc9310196474dad5 schema:name pubmed_id
129 schema:value 16597342
130 rdf:type schema:PropertyValue
131 Nddf24d5709a34cefa5dcc1f57ab1af7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Cluster Analysis
133 rdf:type schema:DefinedTerm
134 Ne881c23a79e642be9f4bfc6850685fe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Software
136 rdf:type schema:DefinedTerm
137 Ne9ff9951ffb14c7b8e946e09dfd983c5 rdf:first sg:person.0642257765.73
138 rdf:rest rdf:nil
139 Nefd2455f04864e7ab0ebb69413d2a245 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Models, Biological
141 rdf:type schema:DefinedTerm
142 Nf2cd30717f0449fda3e24238c7cca66f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Signal Transduction
144 rdf:type schema:DefinedTerm
145 Nf561eb5aa6cf436ab41be8fd96296c68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Transcription Factors
147 rdf:type schema:DefinedTerm
148 Nfd2f47e17fec4190939476b048fbce00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Computer Simulation
150 rdf:type schema:DefinedTerm
151 Nfd3987e87fb9447da11a774519e2ed63 schema:issueNumber 1
152 rdf:type schema:PublicationIssue
153 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
154 schema:name Mathematical Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
157 schema:name Statistics
158 rdf:type schema:DefinedTerm
159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biological Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
163 schema:name Genetics
164 rdf:type schema:DefinedTerm
165 sg:grant.2709166 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-191
166 rdf:type schema:MonetaryGrant
167 sg:grant.3054413 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-191
168 rdf:type schema:MonetaryGrant
169 sg:journal.1023786 schema:issn 1471-2105
170 schema:name BMC Bioinformatics
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.0642257765.73 schema:affiliation grid-institutes:grid.147455.6
174 schema:familyName Bar-Joseph
175 schema:givenName Ziv
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642257765.73
177 rdf:type schema:Person
178 sg:person.0720743120.38 schema:affiliation grid-institutes:grid.147455.6
179 schema:familyName Ernst
180 schema:givenName Jason
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720743120.38
182 rdf:type schema:Person
183 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
184 https://doi.org/10.1038/10343
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
187 https://doi.org/10.1038/75556
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/1471-2105-6-168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047729779
190 https://doi.org/10.1186/1471-2105-6-168
191 rdf:type schema:CreativeWork
192 sg:pub.10.1186/1471-2105-6-232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028486092
193 https://doi.org/10.1186/1471-2105-6-232
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.147455.6 schema:alternateName Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA
196 schema:name Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...