STEM: a tool for the analysis of short time series gene expression data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-04-05

AUTHORS

Jason Ernst, Ziv Bar-Joseph

ABSTRACT

BackgroundTime series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.ResultsWe introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology.ConclusionThe unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem. More... »

PAGES

191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-191

DOI

http://dx.doi.org/10.1186/1471-2105-7-191

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023286996

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16597342


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ernst", 
        "givenName": "Jason", 
        "id": "sg:person.0720743120.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720743120.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bar-Joseph", 
        "givenName": "Ziv", 
        "id": "sg:person.0642257765.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642257765.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-6-168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047729779", 
          "https://doi.org/10.1186/1471-2105-6-168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028486092", 
          "https://doi.org/10.1186/1471-2105-6-232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04-05", 
    "datePublishedReg": "2006-04-05", 
    "description": "BackgroundTime series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3\u20138 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.ResultsWe introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology.ConclusionThe unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-7-191", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3054413", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2709166", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "short time series gene expression data", 
      "time series gene expression data", 
      "gene expression data", 
      "first software program", 
      "non-profit users", 
      "microarray gene expression data", 
      "dynamical biological processes", 
      "visualization capabilities", 
      "expression data", 
      "short time series data", 
      "time series data", 
      "microarray time series experiments", 
      "analysis tools", 
      "software program", 
      "expression analysis tools", 
      "such data", 
      "ontology", 
      "series data", 
      "users", 
      "download", 
      "tool", 
      "integration", 
      "unique challenges", 
      "microarray experiments", 
      "biological interpretation", 
      "time series experiments", 
      "data", 
      "implements", 
      "Gene Ontology", 
      "capability", 
      "analysis of data", 
      "experiments", 
      "gene expression analysis tools", 
      "miners", 
      "cost", 
      "limited availability", 
      "series experiments", 
      "challenges", 
      "significant portion", 
      "unique method", 
      "availability", 
      "method", 
      "opportunities", 
      "process", 
      "analysis", 
      "program", 
      "interpretation", 
      "cases", 
      "portion", 
      "series", 
      "biological processes", 
      "Short Time-series Expression Miner", 
      "microarray studies", 
      "study", 
      "time-series microarray gene expression data", 
      "biological materials", 
      "materials", 
      "stem"
    ], 
    "name": "STEM: a tool for the analysis of short time series gene expression data", 
    "pagination": "191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023286996"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-191"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16597342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-191", 
      "https://app.dimensions.ai/details/publication/pub.1023286996"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-7-191"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-191'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-191'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-191'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-191'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      100 URIs      86 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-191 schema:about N0ee56acd19f84c2c99537c6207776662
2 N17d9acb810be42ed8a0a63ae41cde2ff
3 N2f371b239965452789995966e46f05a0
4 N50da2b1bec8d4bd2b84cab34a28f1a15
5 N644d29d1d4f84def97b6cd8d748a6eb3
6 N738ec927b8074ba18e1a4b6fb2cff209
7 N9aa7eee5a1084726b6ab42a8cb865737
8 Nde89bca0cf7049dab3504d12a51f0086
9 Ne72d3ba343a64fc3b002bd0f8e75d2fb
10 Nf1bcbb55e0ed44f6813d3ca2b9cdc6e6
11 Nfb2ab62d56ed45b49cf286f23d36d251
12 anzsrc-for:01
13 anzsrc-for:0104
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N44a82a009e864740a21b00eec2cec5c3
17 schema:citation sg:pub.10.1038/10343
18 sg:pub.10.1038/75556
19 sg:pub.10.1186/1471-2105-6-168
20 sg:pub.10.1186/1471-2105-6-232
21 schema:datePublished 2006-04-05
22 schema:datePublishedReg 2006-04-05
23 schema:description BackgroundTime series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.ResultsWe introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology.ConclusionThe unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N4735814ec5db439192e79e8a2137de4d
27 Nebe59881c993427f891dd8e28d02ca32
28 sg:journal.1023786
29 schema:keywords Gene Ontology
30 Short Time-series Expression Miner
31 analysis
32 analysis of data
33 analysis tools
34 availability
35 biological interpretation
36 biological materials
37 biological processes
38 capability
39 cases
40 challenges
41 cost
42 data
43 download
44 dynamical biological processes
45 experiments
46 expression analysis tools
47 expression data
48 first software program
49 gene expression analysis tools
50 gene expression data
51 implements
52 integration
53 interpretation
54 limited availability
55 materials
56 method
57 microarray experiments
58 microarray gene expression data
59 microarray studies
60 microarray time series experiments
61 miners
62 non-profit users
63 ontology
64 opportunities
65 portion
66 process
67 program
68 series
69 series data
70 series experiments
71 short time series data
72 short time series gene expression data
73 significant portion
74 software program
75 stem
76 study
77 such data
78 time series data
79 time series experiments
80 time series gene expression data
81 time-series microarray gene expression data
82 tool
83 unique challenges
84 unique method
85 users
86 visualization capabilities
87 schema:name STEM: a tool for the analysis of short time series gene expression data
88 schema:pagination 191
89 schema:productId N3e15d14cd4b4499a99c1dfa70c2d1d44
90 Ncaf0b2906dfb4ece8b89b5340f9bdf74
91 Ncd4e34d0fead47c186d183e4bad0b74f
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023286996
93 https://doi.org/10.1186/1471-2105-7-191
94 schema:sdDatePublished 2022-08-04T16:57
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nd804efbce4384756b2613654d24cc416
97 schema:url https://doi.org/10.1186/1471-2105-7-191
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N0ee56acd19f84c2c99537c6207776662 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Signal Transduction
103 rdf:type schema:DefinedTerm
104 N17d9acb810be42ed8a0a63ae41cde2ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Pattern Recognition, Automated
106 rdf:type schema:DefinedTerm
107 N2db98153914d4da093a3220f2be6226c rdf:first sg:person.0642257765.73
108 rdf:rest rdf:nil
109 N2f371b239965452789995966e46f05a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Oligonucleotide Array Sequence Analysis
111 rdf:type schema:DefinedTerm
112 N3e15d14cd4b4499a99c1dfa70c2d1d44 schema:name pubmed_id
113 schema:value 16597342
114 rdf:type schema:PropertyValue
115 N44a82a009e864740a21b00eec2cec5c3 rdf:first sg:person.0720743120.38
116 rdf:rest N2db98153914d4da093a3220f2be6226c
117 N4735814ec5db439192e79e8a2137de4d schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 N50da2b1bec8d4bd2b84cab34a28f1a15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Software
121 rdf:type schema:DefinedTerm
122 N644d29d1d4f84def97b6cd8d748a6eb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Gene Expression Profiling
124 rdf:type schema:DefinedTerm
125 N738ec927b8074ba18e1a4b6fb2cff209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Transcription Factors
127 rdf:type schema:DefinedTerm
128 N9aa7eee5a1084726b6ab42a8cb865737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Models, Biological
130 rdf:type schema:DefinedTerm
131 Ncaf0b2906dfb4ece8b89b5340f9bdf74 schema:name dimensions_id
132 schema:value pub.1023286996
133 rdf:type schema:PropertyValue
134 Ncd4e34d0fead47c186d183e4bad0b74f schema:name doi
135 schema:value 10.1186/1471-2105-7-191
136 rdf:type schema:PropertyValue
137 Nd804efbce4384756b2613654d24cc416 schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 Nde89bca0cf7049dab3504d12a51f0086 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Cluster Analysis
141 rdf:type schema:DefinedTerm
142 Ne72d3ba343a64fc3b002bd0f8e75d2fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Computer Simulation
144 rdf:type schema:DefinedTerm
145 Nebe59881c993427f891dd8e28d02ca32 schema:volumeNumber 7
146 rdf:type schema:PublicationVolume
147 Nf1bcbb55e0ed44f6813d3ca2b9cdc6e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Time Factors
149 rdf:type schema:DefinedTerm
150 Nfb2ab62d56ed45b49cf286f23d36d251 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Gene Expression Regulation
152 rdf:type schema:DefinedTerm
153 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
154 schema:name Mathematical Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
157 schema:name Statistics
158 rdf:type schema:DefinedTerm
159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biological Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
163 schema:name Genetics
164 rdf:type schema:DefinedTerm
165 sg:grant.2709166 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-191
166 rdf:type schema:MonetaryGrant
167 sg:grant.3054413 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-191
168 rdf:type schema:MonetaryGrant
169 sg:journal.1023786 schema:issn 1471-2105
170 schema:name BMC Bioinformatics
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.0642257765.73 schema:affiliation grid-institutes:grid.147455.6
174 schema:familyName Bar-Joseph
175 schema:givenName Ziv
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642257765.73
177 rdf:type schema:Person
178 sg:person.0720743120.38 schema:affiliation grid-institutes:grid.147455.6
179 schema:familyName Ernst
180 schema:givenName Jason
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720743120.38
182 rdf:type schema:Person
183 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
184 https://doi.org/10.1038/10343
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
187 https://doi.org/10.1038/75556
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/1471-2105-6-168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047729779
190 https://doi.org/10.1186/1471-2105-6-168
191 rdf:type schema:CreativeWork
192 sg:pub.10.1186/1471-2105-6-232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028486092
193 https://doi.org/10.1186/1471-2105-6-232
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.147455.6 schema:alternateName Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA
196 schema:name Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., 15213, Pittsburgh, PA, USA
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...