SNPs3D: Candidate gene and SNP selection for association studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Peng Yue, Eugene Melamud, John Moult

ABSTRACT

BACKGROUND: The relationship between disease susceptibility and genetic variation is complex, and many different types of data are relevant. We describe a web resource and database that provides and integrates as much information as possible on disease/gene relationships at the molecular level. DESCRIPTION: The resource http://www.SNPs3D.org has three primary modules. One module identifies which genes are candidates for involvement in a specified disease. A second module provides information about the relationships between sets of candidate genes. The third module analyzes the likely impact of non-synonymous SNPs on protein function. Disease/candidate gene relationships and gene-gene relationships are derived from the literature using simple but effective text profiling. SNP/protein function relationships are derived by two methods, one using principles of protein structure and stability, the other based on sequence conservation. Entries for each gene include a number of links to other data, such as expression profiles, pathway context, mouse knockout information and papers. Gene-gene interactions are presented in an interactive graphical interface, providing rapid access to the underlying information, as well as convenient navigation through the network. Use of the resource is illustrated with aspects of the inflammatory response and hypertension. CONCLUSION: The combination of SNP impact analysis, a knowledge based network of gene relationships and candidate genes, and access to a wide range of data and literature allow a user to quickly assimilate available information, and so develop models of gene-pathway-disease interaction. More... »

PAGES

166

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-166

DOI

http://dx.doi.org/10.1186/1471-2105-7-166

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008763878

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16551372


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Testing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Online Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 20850, Rockville, MD, USA", 
            "Molecular and cellular Biology Program, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yue", 
        "givenName": "Peng", 
        "id": "sg:person.01115425115.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115425115.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 20850, Rockville, MD, USA", 
            "Molecular and cellular Biology Program, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Melamud", 
        "givenName": "Eugene", 
        "id": "sg:person.01104470606.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104470606.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moult", 
        "givenName": "John", 
        "id": "sg:person.01267513661.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267513661.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1291/hypres.25.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000974935", 
          "https://doi.org/10.1291/hypres.25.179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002198958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-93961-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003372715", 
          "https://doi.org/10.1007/978-3-322-93961-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-93961-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003372715", 
          "https://doi.org/10.1007/978-3-322-93961-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005817660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007488687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009335681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009644940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011275504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011881979", 
          "https://doi.org/10.1038/10297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011881979", 
          "https://doi.org/10.1038/10297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00442-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013603912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.20063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013631335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014360708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1091403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015172314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.97.18.1766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015257972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1479992.1480025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015714961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016544462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016690466", 
          "https://doi.org/10.1038/ng1523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016690466", 
          "https://doi.org/10.1038/ng1523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.10212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017002566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1527-3466.2003.tb00115.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017262840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1527-3466.2003.tb00115.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017262840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017271040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018005161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/10.6.591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018892969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025130025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.131147598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026911628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/340245a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028860985", 
          "https://doi.org/10.1038/340245a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/340245a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028860985", 
          "https://doi.org/10.1038/340245a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1090289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029676590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(01)00241-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029883534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0504-431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031425235", 
          "https://doi.org/10.1038/ng0504-431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0504-431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031425235", 
          "https://doi.org/10.1038/ng0504-431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375146a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952418", 
          "https://doi.org/10.1038/375146a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032294737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032298109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032401545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033229976", 
          "https://doi.org/10.1038/nrg1288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033229976", 
          "https://doi.org/10.1038/nrg1288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2002-020090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033512479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00813-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033884262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.b.10066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036420393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-29623-9_7146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037739161", 
          "https://doi.org/10.1007/3-540-29623-9_7146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038325781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(99)01882-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038524759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004390050272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038812540", 
          "https://doi.org/10.1007/s004390050272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004390050272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038812540", 
          "https://doi.org/10.1007/s004390050272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00240-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039096399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00240-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039096399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81032-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039538908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040530060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkf493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043756780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.012025199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044815609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047146394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1087361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048921070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051365993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051418439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052020554", 
          "https://doi.org/10.1038/nature01512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052020554", 
          "https://doi.org/10.1038/nature01512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1091317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053181888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1099511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/phgs.4.1.53.22587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067591527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670461", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077020028", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: The relationship between disease susceptibility and genetic variation is complex, and many different types of data are relevant. We describe a web resource and database that provides and integrates as much information as possible on disease/gene relationships at the molecular level.\nDESCRIPTION: The resource http://www.SNPs3D.org has three primary modules. One module identifies which genes are candidates for involvement in a specified disease. A second module provides information about the relationships between sets of candidate genes. The third module analyzes the likely impact of non-synonymous SNPs on protein function. Disease/candidate gene relationships and gene-gene relationships are derived from the literature using simple but effective text profiling. SNP/protein function relationships are derived by two methods, one using principles of protein structure and stability, the other based on sequence conservation. Entries for each gene include a number of links to other data, such as expression profiles, pathway context, mouse knockout information and papers. Gene-gene interactions are presented in an interactive graphical interface, providing rapid access to the underlying information, as well as convenient navigation through the network. Use of the resource is illustrated with aspects of the inflammatory response and hypertension.\nCONCLUSION: The combination of SNP impact analysis, a knowledge based network of gene relationships and candidate genes, and access to a wide range of data and literature allow a user to quickly assimilate available information, and so develop models of gene-pathway-disease interaction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-166", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2545483", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "SNPs3D: Candidate gene and SNP selection for association studies", 
    "pagination": "166", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "29c10455e26886aec4ceb9d984d6276419ae3db3e47988f47872da8f885e71f8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16551372"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-166"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008763878"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-166", 
      "https://app.dimensions.ai/details/publication/pub.1008763878"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-7-166"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-166'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-166'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-166'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-166'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      93 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-166 schema:about N29c0a788a345401aa2eea66f789beba0
2 N418ce13e8b664cba870c30fdd0080005
3 N4b21586a65b2437087a03030b9ff682c
4 N7d6bf6bbe0fd4d088b93662ebdc5c04f
5 N923a1dae8331474489bb26ffd7a722aa
6 Nc53185e63ad24c36b55c2e59f08f2937
7 Ncd7caba28568463bb8fcc559bf9176fd
8 Nd58dc6146d774f36934e950cb8dee500
9 Nf1eb348158664bf1857d7130e2bb62fb
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N781163dbc0ce4e84bd5c69af7f7feb75
13 schema:citation sg:pub.10.1007/3-540-29623-9_7146
14 sg:pub.10.1007/978-3-322-93961-6
15 sg:pub.10.1007/s004390050272
16 sg:pub.10.1038/10297
17 sg:pub.10.1038/340245a0
18 sg:pub.10.1038/375146a0
19 sg:pub.10.1038/nature01512
20 sg:pub.10.1038/ng0504-431
21 sg:pub.10.1038/ng1523
22 sg:pub.10.1038/nrg1288
23 sg:pub.10.1291/hypres.25.179
24 https://app.dimensions.ai/details/publication/pub.1074670461
25 https://app.dimensions.ai/details/publication/pub.1077020028
26 https://doi.org/10.1002/ajmg.b.10066
27 https://doi.org/10.1002/humu.10212
28 https://doi.org/10.1002/humu.20063
29 https://doi.org/10.1002/humu.22
30 https://doi.org/10.1006/jmbi.2001.4510
31 https://doi.org/10.1016/j.jmb.2005.08.020
32 https://doi.org/10.1016/j.jmb.2005.12.025
33 https://doi.org/10.1016/s0022-2836(02)00442-4
34 https://doi.org/10.1016/s0022-2836(02)00813-6
35 https://doi.org/10.1016/s0022-2836(03)00240-7
36 https://doi.org/10.1016/s0092-8674(00)81032-6
37 https://doi.org/10.1016/s0092-8674(01)00241-0
38 https://doi.org/10.1016/s0168-9525(99)01882-x
39 https://doi.org/10.1073/pnas.012025199
40 https://doi.org/10.1073/pnas.131147598
41 https://doi.org/10.1093/bioinformatics/btg241
42 https://doi.org/10.1093/bioinformatics/btg297
43 https://doi.org/10.1093/bioinformatics/btg452
44 https://doi.org/10.1093/bioinformatics/bti220
45 https://doi.org/10.1093/hmg/10.6.591
46 https://doi.org/10.1093/nar/29.1.308
47 https://doi.org/10.1093/nar/gkf493
48 https://doi.org/10.1093/nar/gkg056
49 https://doi.org/10.1093/nar/gkg509
50 https://doi.org/10.1093/nar/gkh036
51 https://doi.org/10.1093/nar/gkh063
52 https://doi.org/10.1093/nar/gkh070
53 https://doi.org/10.1093/nar/gkh104
54 https://doi.org/10.1093/nar/gki033
55 https://doi.org/10.1093/nar/gki051
56 https://doi.org/10.1093/nar/gki086
57 https://doi.org/10.1093/nar/gki404
58 https://doi.org/10.1111/j.1527-3466.2003.tb00115.x
59 https://doi.org/10.1126/science.1087361
60 https://doi.org/10.1126/science.1090289
61 https://doi.org/10.1126/science.1091317
62 https://doi.org/10.1126/science.1091403
63 https://doi.org/10.1126/science.1099511
64 https://doi.org/10.1145/1479992.1480025
65 https://doi.org/10.1161/01.cir.97.18.1766
66 https://doi.org/10.1210/jc.2002-020090
67 https://doi.org/10.1517/phgs.4.1.53.22587
68 schema:datePublished 2006-12
69 schema:datePublishedReg 2006-12-01
70 schema:description BACKGROUND: The relationship between disease susceptibility and genetic variation is complex, and many different types of data are relevant. We describe a web resource and database that provides and integrates as much information as possible on disease/gene relationships at the molecular level. DESCRIPTION: The resource http://www.SNPs3D.org has three primary modules. One module identifies which genes are candidates for involvement in a specified disease. A second module provides information about the relationships between sets of candidate genes. The third module analyzes the likely impact of non-synonymous SNPs on protein function. Disease/candidate gene relationships and gene-gene relationships are derived from the literature using simple but effective text profiling. SNP/protein function relationships are derived by two methods, one using principles of protein structure and stability, the other based on sequence conservation. Entries for each gene include a number of links to other data, such as expression profiles, pathway context, mouse knockout information and papers. Gene-gene interactions are presented in an interactive graphical interface, providing rapid access to the underlying information, as well as convenient navigation through the network. Use of the resource is illustrated with aspects of the inflammatory response and hypertension. CONCLUSION: The combination of SNP impact analysis, a knowledge based network of gene relationships and candidate genes, and access to a wide range of data and literature allow a user to quickly assimilate available information, and so develop models of gene-pathway-disease interaction.
71 schema:genre research_article
72 schema:inLanguage en
73 schema:isAccessibleForFree true
74 schema:isPartOf Nb44496ad48de4eb79102a11666fcbb8d
75 Ndbb48c067e844a30b6b06740dfc18dc6
76 sg:journal.1023786
77 schema:name SNPs3D: Candidate gene and SNP selection for association studies
78 schema:pagination 166
79 schema:productId N35570b7d9acb46b08c93b15ad7e756d2
80 N42932002b2b84d438f3ed46fad0526b5
81 N5e466a02ccae44249321653f11ad8c53
82 N7603c47a8cb64b7887bf129e54bae3d5
83 N8984db20bb1e46f2a8966f1647db1067
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008763878
85 https://doi.org/10.1186/1471-2105-7-166
86 schema:sdDatePublished 2019-04-10T14:16
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N72149a8240a44611a19034dee6920cd3
89 schema:url http://link.springer.com/10.1186%2F1471-2105-7-166
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N0ce1a0913c5d45399403edd05860ec5d rdf:first sg:person.01104470606.47
94 rdf:rest N76b6b3694398485680b32c1b53eeb681
95 N29c0a788a345401aa2eea66f789beba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Genetic Predisposition to Disease
97 rdf:type schema:DefinedTerm
98 N35570b7d9acb46b08c93b15ad7e756d2 schema:name nlm_unique_id
99 schema:value 100965194
100 rdf:type schema:PropertyValue
101 N418ce13e8b664cba870c30fdd0080005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Genetic Markers
103 rdf:type schema:DefinedTerm
104 N42932002b2b84d438f3ed46fad0526b5 schema:name doi
105 schema:value 10.1186/1471-2105-7-166
106 rdf:type schema:PropertyValue
107 N4b21586a65b2437087a03030b9ff682c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Internet
109 rdf:type schema:DefinedTerm
110 N5e466a02ccae44249321653f11ad8c53 schema:name readcube_id
111 schema:value 29c10455e26886aec4ceb9d984d6276419ae3db3e47988f47872da8f885e71f8
112 rdf:type schema:PropertyValue
113 N72149a8240a44611a19034dee6920cd3 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N7603c47a8cb64b7887bf129e54bae3d5 schema:name pubmed_id
116 schema:value 16551372
117 rdf:type schema:PropertyValue
118 N76b6b3694398485680b32c1b53eeb681 rdf:first sg:person.01267513661.81
119 rdf:rest rdf:nil
120 N781163dbc0ce4e84bd5c69af7f7feb75 rdf:first sg:person.01115425115.47
121 rdf:rest N0ce1a0913c5d45399403edd05860ec5d
122 N7d6bf6bbe0fd4d088b93662ebdc5c04f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Databases, Genetic
124 rdf:type schema:DefinedTerm
125 N8984db20bb1e46f2a8966f1647db1067 schema:name dimensions_id
126 schema:value pub.1008763878
127 rdf:type schema:PropertyValue
128 N923a1dae8331474489bb26ffd7a722aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Online Systems
130 rdf:type schema:DefinedTerm
131 Nb44496ad48de4eb79102a11666fcbb8d schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 Nc53185e63ad24c36b55c2e59f08f2937 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Polymorphism, Single Nucleotide
135 rdf:type schema:DefinedTerm
136 Ncd7caba28568463bb8fcc559bf9176fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Humans
138 rdf:type schema:DefinedTerm
139 Nd58dc6146d774f36934e950cb8dee500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name User-Computer Interface
141 rdf:type schema:DefinedTerm
142 Ndbb48c067e844a30b6b06740dfc18dc6 schema:volumeNumber 7
143 rdf:type schema:PublicationVolume
144 Nf1eb348158664bf1857d7130e2bb62fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Genetic Testing
146 rdf:type schema:DefinedTerm
147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
148 schema:name Biological Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
151 schema:name Genetics
152 rdf:type schema:DefinedTerm
153 sg:grant.2545483 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-166
154 rdf:type schema:MonetaryGrant
155 sg:journal.1023786 schema:issn 1471-2105
156 schema:name BMC Bioinformatics
157 rdf:type schema:Periodical
158 sg:person.01104470606.47 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
159 schema:familyName Melamud
160 schema:givenName Eugene
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104470606.47
162 rdf:type schema:Person
163 sg:person.01115425115.47 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
164 schema:familyName Yue
165 schema:givenName Peng
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115425115.47
167 rdf:type schema:Person
168 sg:person.01267513661.81 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
169 schema:familyName Moult
170 schema:givenName John
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267513661.81
172 rdf:type schema:Person
173 sg:pub.10.1007/3-540-29623-9_7146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037739161
174 https://doi.org/10.1007/3-540-29623-9_7146
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/978-3-322-93961-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003372715
177 https://doi.org/10.1007/978-3-322-93961-6
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s004390050272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038812540
180 https://doi.org/10.1007/s004390050272
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/10297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011881979
183 https://doi.org/10.1038/10297
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/340245a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028860985
186 https://doi.org/10.1038/340245a0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/375146a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031952418
189 https://doi.org/10.1038/375146a0
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nature01512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052020554
192 https://doi.org/10.1038/nature01512
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/ng0504-431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031425235
195 https://doi.org/10.1038/ng0504-431
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/ng1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016690466
198 https://doi.org/10.1038/ng1523
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nrg1288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033229976
201 https://doi.org/10.1038/nrg1288
202 rdf:type schema:CreativeWork
203 sg:pub.10.1291/hypres.25.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000974935
204 https://doi.org/10.1291/hypres.25.179
205 rdf:type schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1074670461 schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1077020028 schema:CreativeWork
208 https://doi.org/10.1002/ajmg.b.10066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036420393
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/humu.10212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017002566
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/humu.20063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013631335
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/humu.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051418439
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1006/jmbi.2001.4510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051365993
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.jmb.2005.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011275504
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.jmb.2005.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025130025
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0022-2836(02)00442-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013603912
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0022-2836(02)00813-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033884262
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0022-2836(03)00240-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039096399
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0092-8674(00)81032-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039538908
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0092-8674(01)00241-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029883534
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/s0168-9525(99)01882-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038524759
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.012025199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044815609
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.131147598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026911628
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/btg241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047146394
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/bioinformatics/btg297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016544462
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/btg452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007488687
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bioinformatics/bti220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032401545
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/hmg/10.6.591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018892969
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/29.1.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817660
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/gkf493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043756780
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/nar/gkg056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009644940
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/nar/gkg509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002198958
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/nar/gkh036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040530060
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/nar/gkh063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017271040
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/nar/gkh070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014360708
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/nar/gkh104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032294737
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/nar/gki033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032298109
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/nar/gki051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038325781
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/nar/gki086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018005161
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/nar/gki404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009335681
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1111/j.1527-3466.2003.tb00115.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017262840
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1126/science.1087361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048921070
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1126/science.1090289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029676590
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1126/science.1091317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053181888
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1126/science.1091403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015172314
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1126/science.1099511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449759
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1145/1479992.1480025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015714961
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1161/01.cir.97.18.1766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015257972
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1210/jc.2002-020090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033512479
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1517/phgs.4.1.53.22587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067591527
291 rdf:type schema:CreativeWork
292 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
293 schema:name Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 20850, Rockville, MD, USA
294 Molecular and cellular Biology Program, University of Maryland, 20742, College Park, MD, USA
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...