An application of statistics to comparative metagenomics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-03-20

AUTHORS

Beltran Rodriguez-Brito, Forest Rohwer, Robert A Edwards

ABSTRACT

BackgroundMetagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments.ResultsHere we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified.ConclusionThe methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems. More... »

PAGES

162

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-162

DOI

http://dx.doi.org/10.1186/1471-2105-7-162

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044943589

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16549025


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Science Research Center, San Diego State University, San Diego, USA", 
          "id": "http://www.grid.ac/institutes/grid.263081.e", 
          "name": [
            "Computational Science Research Center, San Diego State University, San Diego, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez-Brito", 
        "givenName": "Beltran", 
        "id": "sg:person.01033145410.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033145410.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology, San Diego State University, San Diego, USA", 
          "id": "http://www.grid.ac/institutes/grid.263081.e", 
          "name": [
            "Center for Microbial Sciences, San Diego State University, San Diego, USA", 
            "Department of Biology, San Diego State University, San Diego, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohwer", 
        "givenName": "Forest", 
        "id": "sg:person.0606340210.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606340210.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fellowship for Interpretation of Genomes, Burr Ridge, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computational Science Research Center, San Diego State University, San Diego, USA", 
            "Center for Microbial Sciences, San Diego State University, San Diego, USA", 
            "Department of Biology, San Diego State University, San Diego, USA", 
            "Fellowship for Interpretation of Genomes, Burr Ridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edwards", 
        "givenName": "Robert A", 
        "id": "sg:person.01136331207.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136331207.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrmicro1182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005344405", 
          "https://doi.org/10.1038/nrmicro1182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035689669", 
          "https://doi.org/10.1038/nrmicro1158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj/jim/7000176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056650106", 
          "https://doi.org/10.1038/sj/jim/7000176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11262-004-5624-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026414183", 
          "https://doi.org/10.1007/s11262-004-5624-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023089166", 
          "https://doi.org/10.1038/nature02340"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03-20", 
    "datePublishedReg": "2006-03-20", 
    "description": "BackgroundMetagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments.ResultsHere we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified.ConclusionThe methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-7-162", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3029282", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "metabolic potential", 
      "non-redundant database", 
      "different metabolic potential", 
      "comparative metagenomics", 
      "metabolism of microbes", 
      "community dynamics", 
      "metagenome sequences", 
      "particular ecosystem", 
      "genomic DNA", 
      "different environments", 
      "sequence analysis", 
      "metagenomes", 
      "metagenomics", 
      "testable hypotheses", 
      "Sargasso Sea", 
      "ecosystems", 
      "physiology", 
      "metabolism", 
      "potential leads", 
      "ecology", 
      "microbes", 
      "organisms", 
      "DNA", 
      "sequence", 
      "ResultsHere", 
      "environment", 
      "Sea", 
      "potential", 
      "hypothesis", 
      "analysis", 
      "dynamics", 
      "statistical methods", 
      "differences", 
      "lead", 
      "database", 
      "comparison", 
      "approach", 
      "application of statistics", 
      "applications", 
      "method", 
      "methodology", 
      "statistics", 
      "subsystems"
    ], 
    "name": "An application of statistics to comparative metagenomics", 
    "pagination": "162", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044943589"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-162"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16549025"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-162", 
      "https://app.dimensions.ai/details/publication/pub.1044943589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_432.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-7-162"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-162'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-162'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-162'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-162'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      82 URIs      69 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-162 schema:about N02e568c8262b43ac88a213d725188140
2 N0872a8e5f15b447098d2d9a74fbdcb68
3 N210f5a64655a46aabf8c2b9a3de0d4b4
4 N3ae2957a65804eecbd33d2c1d9ef4bd0
5 N54d3b5926a8f43ffad74ef836fae3fec
6 N68f1e6b5c50b49cf81f2006d846878e2
7 Nad9177f6c9e348b4adb806874a161c36
8 Nb2df89828136403aa7b2e903ed4f11c9
9 Nc41f9870876c4fada53cbd628c5f2849
10 anzsrc-for:06
11 anzsrc-for:0605
12 schema:author N5c4b0d1636ea450396e2e3e6a0dcd630
13 schema:citation sg:pub.10.1007/s11262-004-5624-3
14 sg:pub.10.1038/nature02340
15 sg:pub.10.1038/nrmicro1158
16 sg:pub.10.1038/nrmicro1182
17 sg:pub.10.1038/sj/jim/7000176
18 schema:datePublished 2006-03-20
19 schema:datePublishedReg 2006-03-20
20 schema:description BackgroundMetagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments.ResultsHere we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified.ConclusionThe methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N36a12055bcb44c05962b0c7c33fcc396
24 N5256a60609c7486f811a98a5f5c4e68b
25 sg:journal.1023786
26 schema:keywords DNA
27 ResultsHere
28 Sargasso Sea
29 Sea
30 analysis
31 application of statistics
32 applications
33 approach
34 community dynamics
35 comparative metagenomics
36 comparison
37 database
38 differences
39 different environments
40 different metabolic potential
41 dynamics
42 ecology
43 ecosystems
44 environment
45 genomic DNA
46 hypothesis
47 lead
48 metabolic potential
49 metabolism
50 metabolism of microbes
51 metagenome sequences
52 metagenomes
53 metagenomics
54 method
55 methodology
56 microbes
57 non-redundant database
58 organisms
59 particular ecosystem
60 physiology
61 potential
62 potential leads
63 sequence
64 sequence analysis
65 statistical methods
66 statistics
67 subsystems
68 testable hypotheses
69 schema:name An application of statistics to comparative metagenomics
70 schema:pagination 162
71 schema:productId N79b636d972aa4aa29791016e9071a004
72 N88fa00e670834fb589d71e51ae0dfec5
73 N8f91b85a3d354f68a0de25b5608712b6
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044943589
75 https://doi.org/10.1186/1471-2105-7-162
76 schema:sdDatePublished 2022-10-01T06:34
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nad2c95fbbedf45b9aadcd9704a4fe330
79 schema:url https://doi.org/10.1186/1471-2105-7-162
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N02e568c8262b43ac88a213d725188140 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Signal Transduction
85 rdf:type schema:DefinedTerm
86 N0872a8e5f15b447098d2d9a74fbdcb68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Data Interpretation, Statistical
88 rdf:type schema:DefinedTerm
89 N210f5a64655a46aabf8c2b9a3de0d4b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Proteome
91 rdf:type schema:DefinedTerm
92 N2f09a735acb44e2f926288b979485c40 rdf:first sg:person.0606340210.26
93 rdf:rest Nee6cb3a8b02a44499206f7649857f54b
94 N36a12055bcb44c05962b0c7c33fcc396 schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N3ae2957a65804eecbd33d2c1d9ef4bd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 N5256a60609c7486f811a98a5f5c4e68b schema:volumeNumber 7
100 rdf:type schema:PublicationVolume
101 N54d3b5926a8f43ffad74ef836fae3fec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Genomics
103 rdf:type schema:DefinedTerm
104 N5c4b0d1636ea450396e2e3e6a0dcd630 rdf:first sg:person.01033145410.54
105 rdf:rest N2f09a735acb44e2f926288b979485c40
106 N68f1e6b5c50b49cf81f2006d846878e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Models, Statistical
108 rdf:type schema:DefinedTerm
109 N79b636d972aa4aa29791016e9071a004 schema:name doi
110 schema:value 10.1186/1471-2105-7-162
111 rdf:type schema:PropertyValue
112 N88fa00e670834fb589d71e51ae0dfec5 schema:name dimensions_id
113 schema:value pub.1044943589
114 rdf:type schema:PropertyValue
115 N8f91b85a3d354f68a0de25b5608712b6 schema:name pubmed_id
116 schema:value 16549025
117 rdf:type schema:PropertyValue
118 Nad2c95fbbedf45b9aadcd9704a4fe330 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nad9177f6c9e348b4adb806874a161c36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Computer Simulation
122 rdf:type schema:DefinedTerm
123 Nb2df89828136403aa7b2e903ed4f11c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Models, Biological
125 rdf:type schema:DefinedTerm
126 Nc41f9870876c4fada53cbd628c5f2849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Sequence Analysis, DNA
128 rdf:type schema:DefinedTerm
129 Nee6cb3a8b02a44499206f7649857f54b rdf:first sg:person.01136331207.33
130 rdf:rest rdf:nil
131 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
132 schema:name Biological Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
135 schema:name Microbiology
136 rdf:type schema:DefinedTerm
137 sg:grant.3029282 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-162
138 rdf:type schema:MonetaryGrant
139 sg:journal.1023786 schema:issn 1471-2105
140 schema:name BMC Bioinformatics
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.01033145410.54 schema:affiliation grid-institutes:grid.263081.e
144 schema:familyName Rodriguez-Brito
145 schema:givenName Beltran
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033145410.54
147 rdf:type schema:Person
148 sg:person.01136331207.33 schema:affiliation grid-institutes:None
149 schema:familyName Edwards
150 schema:givenName Robert A
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136331207.33
152 rdf:type schema:Person
153 sg:person.0606340210.26 schema:affiliation grid-institutes:grid.263081.e
154 schema:familyName Rohwer
155 schema:givenName Forest
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606340210.26
157 rdf:type schema:Person
158 sg:pub.10.1007/s11262-004-5624-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026414183
159 https://doi.org/10.1007/s11262-004-5624-3
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
162 https://doi.org/10.1038/nature02340
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nrmicro1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689669
165 https://doi.org/10.1038/nrmicro1158
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nrmicro1182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005344405
168 https://doi.org/10.1038/nrmicro1182
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/sj/jim/7000176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056650106
171 https://doi.org/10.1038/sj/jim/7000176
172 rdf:type schema:CreativeWork
173 grid-institutes:None schema:alternateName Fellowship for Interpretation of Genomes, Burr Ridge, USA
174 schema:name Center for Microbial Sciences, San Diego State University, San Diego, USA
175 Computational Science Research Center, San Diego State University, San Diego, USA
176 Department of Biology, San Diego State University, San Diego, USA
177 Fellowship for Interpretation of Genomes, Burr Ridge, USA
178 rdf:type schema:Organization
179 grid-institutes:grid.263081.e schema:alternateName Computational Science Research Center, San Diego State University, San Diego, USA
180 Department of Biology, San Diego State University, San Diego, USA
181 schema:name Center for Microbial Sciences, San Diego State University, San Diego, USA
182 Computational Science Research Center, San Diego State University, San Diego, USA
183 Department of Biology, San Diego State University, San Diego, USA
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...