An application of statistics to comparative metagenomics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-03-20

AUTHORS

Beltran Rodriguez-Brito, Forest Rohwer, Robert A Edwards

ABSTRACT

BackgroundMetagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments.ResultsHere we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified.ConclusionThe methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems. More... »

PAGES

162

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-162

DOI

http://dx.doi.org/10.1186/1471-2105-7-162

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044943589

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16549025


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Science Research Center, San Diego State University, San Diego, USA", 
          "id": "http://www.grid.ac/institutes/grid.263081.e", 
          "name": [
            "Computational Science Research Center, San Diego State University, San Diego, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez-Brito", 
        "givenName": "Beltran", 
        "id": "sg:person.01033145410.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033145410.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology, San Diego State University, San Diego, USA", 
          "id": "http://www.grid.ac/institutes/grid.263081.e", 
          "name": [
            "Center for Microbial Sciences, San Diego State University, San Diego, USA", 
            "Department of Biology, San Diego State University, San Diego, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohwer", 
        "givenName": "Forest", 
        "id": "sg:person.0606340210.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606340210.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fellowship for Interpretation of Genomes, Burr Ridge, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computational Science Research Center, San Diego State University, San Diego, USA", 
            "Center for Microbial Sciences, San Diego State University, San Diego, USA", 
            "Department of Biology, San Diego State University, San Diego, USA", 
            "Fellowship for Interpretation of Genomes, Burr Ridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edwards", 
        "givenName": "Robert A", 
        "id": "sg:person.01136331207.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136331207.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj/jim/7000176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056650106", 
          "https://doi.org/10.1038/sj/jim/7000176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11262-004-5624-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026414183", 
          "https://doi.org/10.1007/s11262-004-5624-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023089166", 
          "https://doi.org/10.1038/nature02340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035689669", 
          "https://doi.org/10.1038/nrmicro1158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005344405", 
          "https://doi.org/10.1038/nrmicro1182"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03-20", 
    "datePublishedReg": "2006-03-20", 
    "description": "BackgroundMetagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments.ResultsHere we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified.ConclusionThe methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-7-162", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3029282", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "metabolic potential", 
      "non-redundant database", 
      "different metabolic potential", 
      "comparative metagenomics", 
      "metabolism of microbes", 
      "community dynamics", 
      "metagenome sequences", 
      "particular ecosystem", 
      "genomic DNA", 
      "different environments", 
      "sequence analysis", 
      "metagenomes", 
      "metagenomics", 
      "testable hypotheses", 
      "Sargasso Sea", 
      "ecosystems", 
      "physiology", 
      "metabolism", 
      "potential leads", 
      "ecology", 
      "microbes", 
      "organisms", 
      "DNA", 
      "sequence", 
      "ResultsHere", 
      "environment", 
      "Sea", 
      "potential", 
      "hypothesis", 
      "analysis", 
      "dynamics", 
      "statistical methods", 
      "differences", 
      "lead", 
      "database", 
      "comparison", 
      "approach", 
      "application of statistics", 
      "applications", 
      "method", 
      "methodology", 
      "statistics", 
      "subsystems"
    ], 
    "name": "An application of statistics to comparative metagenomics", 
    "pagination": "162", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044943589"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-162"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16549025"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-162", 
      "https://app.dimensions.ai/details/publication/pub.1044943589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_427.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-7-162"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-162'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-162'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-162'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-162'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      82 URIs      69 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-162 schema:about N054a8571ef3f45ca9924aebe36f0d8ca
2 N33b83af2683a48e697396bdb01aecf08
3 N3456cf35e281479a81f08e6ee8234b0b
4 N3ea467d37c124090aaac6868fdfb922c
5 N472c556903214fe1a845663075cda80c
6 N700617360119443b8aeb023aac35123c
7 N8fd0e185ba024e688e931227a6da02cd
8 Nad63c9b4b7aa43bd8ef539b67e9110c5
9 Ne2ab48ace3c949ebbbfdd68ac60f7ab5
10 anzsrc-for:06
11 anzsrc-for:0605
12 schema:author Nbaa98f8f97234593a6552797a36a399b
13 schema:citation sg:pub.10.1007/s11262-004-5624-3
14 sg:pub.10.1038/nature02340
15 sg:pub.10.1038/nrmicro1158
16 sg:pub.10.1038/nrmicro1182
17 sg:pub.10.1038/sj/jim/7000176
18 schema:datePublished 2006-03-20
19 schema:datePublishedReg 2006-03-20
20 schema:description BackgroundMetagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments.ResultsHere we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified.ConclusionThe methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N16e301ea35244b24911db072d75d9b54
24 N9eb82c05d99f4d3f82115d5d8584f327
25 sg:journal.1023786
26 schema:keywords DNA
27 ResultsHere
28 Sargasso Sea
29 Sea
30 analysis
31 application of statistics
32 applications
33 approach
34 community dynamics
35 comparative metagenomics
36 comparison
37 database
38 differences
39 different environments
40 different metabolic potential
41 dynamics
42 ecology
43 ecosystems
44 environment
45 genomic DNA
46 hypothesis
47 lead
48 metabolic potential
49 metabolism
50 metabolism of microbes
51 metagenome sequences
52 metagenomes
53 metagenomics
54 method
55 methodology
56 microbes
57 non-redundant database
58 organisms
59 particular ecosystem
60 physiology
61 potential
62 potential leads
63 sequence
64 sequence analysis
65 statistical methods
66 statistics
67 subsystems
68 testable hypotheses
69 schema:name An application of statistics to comparative metagenomics
70 schema:pagination 162
71 schema:productId N5c4deab546024af785dde714f03c625e
72 N8a0c85864b154398a3e55ef95398d0e5
73 Ne568b189a39948febebc263081c33e17
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044943589
75 https://doi.org/10.1186/1471-2105-7-162
76 schema:sdDatePublished 2022-09-02T15:51
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nc3ac1777687e414893d96a93fe5dfd06
79 schema:url https://doi.org/10.1186/1471-2105-7-162
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N054a8571ef3f45ca9924aebe36f0d8ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Computer Simulation
85 rdf:type schema:DefinedTerm
86 N16e301ea35244b24911db072d75d9b54 schema:volumeNumber 7
87 rdf:type schema:PublicationVolume
88 N1b47064aed9e4dc28ac070db84b3b793 rdf:first sg:person.0606340210.26
89 rdf:rest N68e816bb23434b44805193637b380812
90 N33b83af2683a48e697396bdb01aecf08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Sequence Analysis, DNA
92 rdf:type schema:DefinedTerm
93 N3456cf35e281479a81f08e6ee8234b0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Algorithms
95 rdf:type schema:DefinedTerm
96 N3ea467d37c124090aaac6868fdfb922c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Proteome
98 rdf:type schema:DefinedTerm
99 N472c556903214fe1a845663075cda80c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Data Interpretation, Statistical
101 rdf:type schema:DefinedTerm
102 N5c4deab546024af785dde714f03c625e schema:name dimensions_id
103 schema:value pub.1044943589
104 rdf:type schema:PropertyValue
105 N68e816bb23434b44805193637b380812 rdf:first sg:person.01136331207.33
106 rdf:rest rdf:nil
107 N700617360119443b8aeb023aac35123c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Signal Transduction
109 rdf:type schema:DefinedTerm
110 N8a0c85864b154398a3e55ef95398d0e5 schema:name pubmed_id
111 schema:value 16549025
112 rdf:type schema:PropertyValue
113 N8fd0e185ba024e688e931227a6da02cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Genomics
115 rdf:type schema:DefinedTerm
116 N9eb82c05d99f4d3f82115d5d8584f327 schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 Nad63c9b4b7aa43bd8ef539b67e9110c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Models, Biological
120 rdf:type schema:DefinedTerm
121 Nbaa98f8f97234593a6552797a36a399b rdf:first sg:person.01033145410.54
122 rdf:rest N1b47064aed9e4dc28ac070db84b3b793
123 Nc3ac1777687e414893d96a93fe5dfd06 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Ne2ab48ace3c949ebbbfdd68ac60f7ab5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Models, Statistical
127 rdf:type schema:DefinedTerm
128 Ne568b189a39948febebc263081c33e17 schema:name doi
129 schema:value 10.1186/1471-2105-7-162
130 rdf:type schema:PropertyValue
131 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
132 schema:name Biological Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
135 schema:name Microbiology
136 rdf:type schema:DefinedTerm
137 sg:grant.3029282 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-162
138 rdf:type schema:MonetaryGrant
139 sg:journal.1023786 schema:issn 1471-2105
140 schema:name BMC Bioinformatics
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.01033145410.54 schema:affiliation grid-institutes:grid.263081.e
144 schema:familyName Rodriguez-Brito
145 schema:givenName Beltran
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033145410.54
147 rdf:type schema:Person
148 sg:person.01136331207.33 schema:affiliation grid-institutes:None
149 schema:familyName Edwards
150 schema:givenName Robert A
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136331207.33
152 rdf:type schema:Person
153 sg:person.0606340210.26 schema:affiliation grid-institutes:grid.263081.e
154 schema:familyName Rohwer
155 schema:givenName Forest
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606340210.26
157 rdf:type schema:Person
158 sg:pub.10.1007/s11262-004-5624-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026414183
159 https://doi.org/10.1007/s11262-004-5624-3
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
162 https://doi.org/10.1038/nature02340
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nrmicro1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689669
165 https://doi.org/10.1038/nrmicro1158
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nrmicro1182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005344405
168 https://doi.org/10.1038/nrmicro1182
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/sj/jim/7000176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056650106
171 https://doi.org/10.1038/sj/jim/7000176
172 rdf:type schema:CreativeWork
173 grid-institutes:None schema:alternateName Fellowship for Interpretation of Genomes, Burr Ridge, USA
174 schema:name Center for Microbial Sciences, San Diego State University, San Diego, USA
175 Computational Science Research Center, San Diego State University, San Diego, USA
176 Department of Biology, San Diego State University, San Diego, USA
177 Fellowship for Interpretation of Genomes, Burr Ridge, USA
178 rdf:type schema:Organization
179 grid-institutes:grid.263081.e schema:alternateName Computational Science Research Center, San Diego State University, San Diego, USA
180 Department of Biology, San Diego State University, San Diego, USA
181 schema:name Center for Microbial Sciences, San Diego State University, San Diego, USA
182 Computational Science Research Center, San Diego State University, San Diego, USA
183 Department of Biology, San Diego State University, San Diego, USA
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...