Sigma: multiple alignment of weakly-conserved non-coding DNA sequence View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Rahul Siddharthan

ABSTRACT

BACKGROUND: Existing tools for multiple-sequence alignment focus on aligning protein sequence or protein-coding DNA sequence, and are often based on extensions to Needleman-Wunsch-like pairwise alignment methods. We introduce a new tool, Sigma, with a new algorithm and scoring scheme designed specifically for non-coding DNA sequence. This problem acquires importance with the increasing number of published sequences of closely-related species. In particular, studies of gene regulation seek to take advantage of comparative genomics, and recent algorithms for finding regulatory sites in phylogenetically-related intergenic sequence require alignment as a preprocessing step. Much can also be learned about evolution from intergenic DNA, which tends to evolve faster than coding DNA. Sigma uses a strategy of seeking the best possible gapless local alignments (a strategy earlier used by DiAlign), at each step making the best possible alignment consistent with existing alignments, and scores the significance of the alignment based on the lengths of the aligned fragments and a background model which may be supplied or estimated from an auxiliary file of intergenic DNA. RESULTS: Comparative tests of sigma with five earlier algorithms on synthetic data generated to mimic real data show excellent performance, with Sigma balancing high "sensitivity" (more bases aligned) with effective filtering of "incorrect" alignments. With real data, while "correctness" can't be directly quantified for the alignment, running the PhyloGibbs motif finder on pre-aligned sequence suggests that Sigma's alignments are superior. CONCLUSION: By taking into account the peculiarities of non-coding DNA, Sigma fills a gap in the toolbox of bioinformatics. More... »

PAGES

143

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-143

DOI

http://dx.doi.org/10.1186/1471-2105-7-143

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014283709

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16542424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "Institute of Mathematical Sciences, CIT Campus, 600113, Taramani, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddharthan", 
        "givenName": "Rahul", 
        "id": "sg:person.0614124227.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614124227.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-5-170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329510", 
          "https://doi.org/10.1186/1471-2105-5-170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329510", 
          "https://doi.org/10.1186/1471-2105-5-170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003588881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0010067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007052752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010607981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/15.7.607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014666719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016673160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(02)50972-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018053366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020029116", 
          "https://doi.org/10.1186/1471-2105-5-128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020029116", 
          "https://doi.org/10.1186/1471-2105-5-128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022575813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32280-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023472380", 
          "https://doi.org/10.1007/978-3-540-32280-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32280-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023472380", 
          "https://doi.org/10.1007/978-3-540-32280-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/369133.369170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023591049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/369133.369170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023591049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024230952", 
          "https://doi.org/10.1007/bf01206331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024230952", 
          "https://doi.org/10.1007/bf01206331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432182", 
          "https://doi.org/10.1186/1471-2105-4-57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030736656", 
          "https://doi.org/10.1038/nature01097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030736656", 
          "https://doi.org/10.1038/nature01097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.3.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041307225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/15.3.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041319529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.22.4673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.926603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043392725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652700750050826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1084337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076803196", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Existing tools for multiple-sequence alignment focus on aligning protein sequence or protein-coding DNA sequence, and are often based on extensions to Needleman-Wunsch-like pairwise alignment methods. We introduce a new tool, Sigma, with a new algorithm and scoring scheme designed specifically for non-coding DNA sequence. This problem acquires importance with the increasing number of published sequences of closely-related species. In particular, studies of gene regulation seek to take advantage of comparative genomics, and recent algorithms for finding regulatory sites in phylogenetically-related intergenic sequence require alignment as a preprocessing step. Much can also be learned about evolution from intergenic DNA, which tends to evolve faster than coding DNA. Sigma uses a strategy of seeking the best possible gapless local alignments (a strategy earlier used by DiAlign), at each step making the best possible alignment consistent with existing alignments, and scores the significance of the alignment based on the lengths of the aligned fragments and a background model which may be supplied or estimated from an auxiliary file of intergenic DNA.\nRESULTS: Comparative tests of sigma with five earlier algorithms on synthetic data generated to mimic real data show excellent performance, with Sigma balancing high \"sensitivity\" (more bases aligned) with effective filtering of \"incorrect\" alignments. With real data, while \"correctness\" can't be directly quantified for the alignment, running the PhyloGibbs motif finder on pre-aligned sequence suggests that Sigma's alignments are superior.\nCONCLUSION: By taking into account the peculiarities of non-coding DNA, Sigma fills a gap in the toolbox of bioinformatics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-143", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Sigma: multiple alignment of weakly-conserved non-coding DNA sequence", 
    "pagination": "143", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "440bf3006e84e1dbad94729c7f15f5c05fb026162c2f4443db4fc46017832ac7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16542424"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-143"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014283709"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-143", 
      "https://app.dimensions.ai/details/publication/pub.1014283709"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-7-143"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-143'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-143'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-143'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-143'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      63 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-143 schema:about N03a334c5de044a3ab8d33457b0fea42e
2 N03e6946142f04fdbbffdc000253c3535
3 N282046531a6649719a3e7ba08f8bda9a
4 N531c5719273b4714af76d92c21e1b208
5 N6b20e7bbf8a342639ee8eae185d660fc
6 Nab63ff39a380493893b4fd9b4f9fdebf
7 Nc0373a1f136f44d3b2f62b53cb233230
8 Nd6eb25da44a54467beb1819a49eb088e
9 Nd7ec64b08f9f4d27a4edfb8eed7b05c1
10 Nd85507b4fd7840da92bf2708c868723d
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N0cae7e9298df48a9b1f40eb86168e520
14 schema:citation sg:pub.10.1007/978-3-540-32280-1_4
15 sg:pub.10.1007/bf01206331
16 sg:pub.10.1038/nature01097
17 sg:pub.10.1038/nature01644
18 sg:pub.10.1186/1471-2105-4-57
19 sg:pub.10.1186/1471-2105-5-128
20 sg:pub.10.1186/1471-2105-5-170
21 https://app.dimensions.ai/details/publication/pub.1076803196
22 https://doi.org/10.1006/jmbi.2000.4042
23 https://doi.org/10.1016/0022-2836(70)90057-4
24 https://doi.org/10.1016/0022-2836(81)90087-5
25 https://doi.org/10.1016/s0076-6879(02)50972-1
26 https://doi.org/10.1089/106652700750050826
27 https://doi.org/10.1093/bioinformatics/14.3.290
28 https://doi.org/10.1093/bioinformatics/15.3.211
29 https://doi.org/10.1093/bioinformatics/15.7.607
30 https://doi.org/10.1093/bioinformatics/bth116
31 https://doi.org/10.1093/molbev/msg077
32 https://doi.org/10.1093/nar/22.22.4673
33 https://doi.org/10.1093/nar/gkg606
34 https://doi.org/10.1101/gr.926603
35 https://doi.org/10.1126/science.1084337
36 https://doi.org/10.1145/369133.369170
37 https://doi.org/10.1371/journal.pcbi.0010067
38 schema:datePublished 2006-12
39 schema:datePublishedReg 2006-12-01
40 schema:description BACKGROUND: Existing tools for multiple-sequence alignment focus on aligning protein sequence or protein-coding DNA sequence, and are often based on extensions to Needleman-Wunsch-like pairwise alignment methods. We introduce a new tool, Sigma, with a new algorithm and scoring scheme designed specifically for non-coding DNA sequence. This problem acquires importance with the increasing number of published sequences of closely-related species. In particular, studies of gene regulation seek to take advantage of comparative genomics, and recent algorithms for finding regulatory sites in phylogenetically-related intergenic sequence require alignment as a preprocessing step. Much can also be learned about evolution from intergenic DNA, which tends to evolve faster than coding DNA. Sigma uses a strategy of seeking the best possible gapless local alignments (a strategy earlier used by DiAlign), at each step making the best possible alignment consistent with existing alignments, and scores the significance of the alignment based on the lengths of the aligned fragments and a background model which may be supplied or estimated from an auxiliary file of intergenic DNA. RESULTS: Comparative tests of sigma with five earlier algorithms on synthetic data generated to mimic real data show excellent performance, with Sigma balancing high "sensitivity" (more bases aligned) with effective filtering of "incorrect" alignments. With real data, while "correctness" can't be directly quantified for the alignment, running the PhyloGibbs motif finder on pre-aligned sequence suggests that Sigma's alignments are superior. CONCLUSION: By taking into account the peculiarities of non-coding DNA, Sigma fills a gap in the toolbox of bioinformatics.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N0771e7ffe8814e04955865fb43845c73
45 N6546018306334f9a9c7ac0b9a063b135
46 sg:journal.1023786
47 schema:name Sigma: multiple alignment of weakly-conserved non-coding DNA sequence
48 schema:pagination 143
49 schema:productId N31aa80bab74a4c45bce2c219c823a619
50 N48a5ecd8122648f491f614d7b8124724
51 N5f734ba9f84a43bd823e0554069411e0
52 N6f4d1afbbb7d4266b668419ca875949b
53 Naa8480837e864e96a0184daf1172e287
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014283709
55 https://doi.org/10.1186/1471-2105-7-143
56 schema:sdDatePublished 2019-04-11T10:01
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nd3e0376e416d411286343a654b6ec7e8
59 schema:url https://link.springer.com/10.1186%2F1471-2105-7-143
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N03a334c5de044a3ab8d33457b0fea42e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Sequence Analysis, DNA
65 rdf:type schema:DefinedTerm
66 N03e6946142f04fdbbffdc000253c3535 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Artificial Intelligence
68 rdf:type schema:DefinedTerm
69 N0771e7ffe8814e04955865fb43845c73 schema:volumeNumber 7
70 rdf:type schema:PublicationVolume
71 N0cae7e9298df48a9b1f40eb86168e520 rdf:first sg:person.0614124227.85
72 rdf:rest rdf:nil
73 N282046531a6649719a3e7ba08f8bda9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Algorithms
75 rdf:type schema:DefinedTerm
76 N31aa80bab74a4c45bce2c219c823a619 schema:name nlm_unique_id
77 schema:value 100965194
78 rdf:type schema:PropertyValue
79 N48a5ecd8122648f491f614d7b8124724 schema:name doi
80 schema:value 10.1186/1471-2105-7-143
81 rdf:type schema:PropertyValue
82 N531c5719273b4714af76d92c21e1b208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Base Sequence
84 rdf:type schema:DefinedTerm
85 N5f734ba9f84a43bd823e0554069411e0 schema:name readcube_id
86 schema:value 440bf3006e84e1dbad94729c7f15f5c05fb026162c2f4443db4fc46017832ac7
87 rdf:type schema:PropertyValue
88 N6546018306334f9a9c7ac0b9a063b135 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 N6b20e7bbf8a342639ee8eae185d660fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Sequence Alignment
92 rdf:type schema:DefinedTerm
93 N6f4d1afbbb7d4266b668419ca875949b schema:name pubmed_id
94 schema:value 16542424
95 rdf:type schema:PropertyValue
96 Naa8480837e864e96a0184daf1172e287 schema:name dimensions_id
97 schema:value pub.1014283709
98 rdf:type schema:PropertyValue
99 Nab63ff39a380493893b4fd9b4f9fdebf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Conserved Sequence
101 rdf:type schema:DefinedTerm
102 Nc0373a1f136f44d3b2f62b53cb233230 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Software
104 rdf:type schema:DefinedTerm
105 Nd3e0376e416d411286343a654b6ec7e8 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nd6eb25da44a54467beb1819a49eb088e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Pattern Recognition, Automated
109 rdf:type schema:DefinedTerm
110 Nd7ec64b08f9f4d27a4edfb8eed7b05c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Chromosome Mapping
112 rdf:type schema:DefinedTerm
113 Nd85507b4fd7840da92bf2708c868723d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Molecular Sequence Data
115 rdf:type schema:DefinedTerm
116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biological Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
120 schema:name Genetics
121 rdf:type schema:DefinedTerm
122 sg:journal.1023786 schema:issn 1471-2105
123 schema:name BMC Bioinformatics
124 rdf:type schema:Periodical
125 sg:person.0614124227.85 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
126 schema:familyName Siddharthan
127 schema:givenName Rahul
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614124227.85
129 rdf:type schema:Person
130 sg:pub.10.1007/978-3-540-32280-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023472380
131 https://doi.org/10.1007/978-3-540-32280-1_4
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf01206331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024230952
134 https://doi.org/10.1007/bf01206331
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature01097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030736656
137 https://doi.org/10.1038/nature01097
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
140 https://doi.org/10.1038/nature01644
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1471-2105-4-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028432182
143 https://doi.org/10.1186/1471-2105-4-57
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1471-2105-5-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020029116
146 https://doi.org/10.1186/1471-2105-5-128
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/1471-2105-5-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000329510
149 https://doi.org/10.1186/1471-2105-5-170
150 rdf:type schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1076803196 schema:CreativeWork
152 https://doi.org/10.1006/jmbi.2000.4042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022575813
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0076-6879(02)50972-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018053366
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1089/106652700750050826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204852
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/bioinformatics/14.3.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041307225
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/bioinformatics/15.3.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041319529
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/15.7.607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014666719
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/bth116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003588881
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/molbev/msg077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010607981
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/nar/gkg606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016673160
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1101/gr.926603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043392725
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.1084337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448096
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/369133.369170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023591049
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1371/journal.pcbi.0010067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007052752
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.462414.1 schema:alternateName Institute of Mathematical Sciences
185 schema:name Institute of Mathematical Sciences, CIT Campus, 600113, Taramani, Chennai, India
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...