An improved map of conserved regulatory sites for Saccharomyces cerevisiae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Kenzie D MacIsaac, Ting Wang, D Benjamin Gordon, David K Gifford, Gary D Stormo, Ernest Fraenkel

ABSTRACT

BACKGROUND: The regulatory map of a genome consists of the binding sites for proteins that determine the transcription of nearby genes. An initial regulatory map for S. cerevisiae was recently published using six motif discovery programs to analyze genome-wide chromatin immunoprecipitation data for 203 transcription factors. The programs were used to identify sequence motifs that were likely to correspond to the DNA-binding specificity of the immunoprecipitated proteins. We report improved versions of two conservation-based motif discovery algorithms, PhyloCon and Converge. Using these programs, we create a refined regulatory map for S. cerevisiae by reanalyzing the same chromatin immunoprecipitation data. RESULTS: Applying the same conservative criteria that were applied in the original study, we find that PhyloCon and Converge each separately discover more known specificities than the combination of all six programs in the previous study. Combining the results of PhyloCon and Converge, we discover significant sequence motifs for 36 transcription factors that were previously missed. The new set of motifs identifies 636 more regulatory interactions than the previous one. The new network contains 28% more regulatory interactions among transcription factors, evidence of greater cross-talk between regulators. CONCLUSION: Combining two complementary computational strategies for conservation-based motif discovery improves the ability to identify the specificity of transcriptional regulators from genome-wide chromatin immunoprecipitation data. The increased sensitivity of these methods significantly expands the map of yeast regulatory sites without the need to alter any of the thresholds for statistical significance. The new map of regulatory sites reveals a more elaborate and complex view of the yeast genetic regulatory network than was observed previously. More... »

PAGES

113

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-113

DOI

http://dx.doi.org/10.1186/1471-2105-7-113

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007033335

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16522208


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Elements, Transcriptional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcriptional Activation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, MA, USA", 
            "MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MacIsaac", 
        "givenName": "Kenzie D", 
        "id": "sg:person.01205032551.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205032551.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Department of Genetics, Washington University Medical School, 63110, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ting", 
        "id": "sg:person.0727137372.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727137372.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agilent Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.422638.9", 
          "name": [
            "Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, MA, USA", 
            "Agilent Technologies, 245 1st Street, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordon", 
        "givenName": "D Benjamin", 
        "id": "sg:person.01041770560.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041770560.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, MA, USA", 
            "MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gifford", 
        "givenName": "David K", 
        "id": "sg:person.01355314503.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355314503.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Department of Genetics, Washington University Medical School, 63110, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stormo", 
        "givenName": "Gary D", 
        "id": "sg:person.01326321472.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326321472.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, MA, USA", 
            "MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., 02139, Cambridge, MA, USA", 
            "Biological Engineering Division, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraenkel", 
        "givenName": "Ernest", 
        "id": "sg:person.0701112251.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701112251.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-5-170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329510", 
          "https://doi.org/10.1186/1471-2105-5-170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329510", 
          "https://doi.org/10.1186/1471-2105-5-170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/24.22.4479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001372879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1075090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005050124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0501620102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005376177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006618657", 
          "https://doi.org/10.1038/nature02800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006618657", 
          "https://doi.org/10.1038/nature02800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(88)90153-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008942409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.17.9.5044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011399444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.21.11.3714-3724.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014922102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m005624200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016276704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018995020", 
          "https://doi.org/10.1038/4940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.14.3.2100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026931711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.23.1.229-237.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028334947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-4924-2-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029375403", 
          "https://doi.org/10.1186/1475-4924-2-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-004-5735-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030271827", 
          "https://doi.org/10.1007/s10856-004-5735-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/21.16.3777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030530457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/15.7.563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030639875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030939237", 
          "https://doi.org/10.1038/nbt1053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030939237", 
          "https://doi.org/10.1038/nbt1053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.12.9.3834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030940316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.8.1808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032281737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033517893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033517893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.15.12.6854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044627830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1327604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046234411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.11.12.4241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048274369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.17.11.6491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053113036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8346441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062654769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076803196", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076956998", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424111", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424148", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082499337", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083353563", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: The regulatory map of a genome consists of the binding sites for proteins that determine the transcription of nearby genes. An initial regulatory map for S. cerevisiae was recently published using six motif discovery programs to analyze genome-wide chromatin immunoprecipitation data for 203 transcription factors. The programs were used to identify sequence motifs that were likely to correspond to the DNA-binding specificity of the immunoprecipitated proteins. We report improved versions of two conservation-based motif discovery algorithms, PhyloCon and Converge. Using these programs, we create a refined regulatory map for S. cerevisiae by reanalyzing the same chromatin immunoprecipitation data.\nRESULTS: Applying the same conservative criteria that were applied in the original study, we find that PhyloCon and Converge each separately discover more known specificities than the combination of all six programs in the previous study. Combining the results of PhyloCon and Converge, we discover significant sequence motifs for 36 transcription factors that were previously missed. The new set of motifs identifies 636 more regulatory interactions than the previous one. The new network contains 28% more regulatory interactions among transcription factors, evidence of greater cross-talk between regulators.\nCONCLUSION: Combining two complementary computational strategies for conservation-based motif discovery improves the ability to identify the specificity of transcriptional regulators from genome-wide chromatin immunoprecipitation data. The increased sensitivity of these methods significantly expands the map of yeast regulatory sites without the need to alter any of the thresholds for statistical significance. The new map of regulatory sites reveals a more elaborate and complex view of the yeast genetic regulatory network than was observed previously.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-113", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529142", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2528761", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2684534", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "An improved map of conserved regulatory sites for Saccharomyces cerevisiae", 
    "pagination": "113", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2181196dede1b9916a904f10cca23689d584c0f27a1ecf9de6a84c82a0670c6e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16522208"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-113"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007033335"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-113", 
      "https://app.dimensions.ai/details/publication/pub.1007033335"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99815_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-7-113"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-113'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-113'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-113'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-113'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      72 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-113 schema:about N0a30657f2e3b4f1ca01fd260cc8ff653
2 N13ef31cd124745648e64f50ff78d5665
3 N2d4db573e6a84f86a1053ada4416d149
4 N3528bf6c275941448a8680860a6902d3
5 N4393ac00bb604cefbc9751551671c78b
6 N5097ee91bed54caaa21839f1153dfdb1
7 N751f1d5bdd024837a738a195e8bf3da7
8 N79c79203ca114d2cba26486762c333fb
9 Na5563f6586364770aebe461c52ed51b0
10 Nd7b45c443a7249d585e606b5f436ef5a
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N412c1a9c572543bf859a90528bed8472
14 schema:citation sg:pub.10.1007/s10856-004-5735-3
15 sg:pub.10.1038/4940
16 sg:pub.10.1038/nature01644
17 sg:pub.10.1038/nature02800
18 sg:pub.10.1038/nbt1053
19 sg:pub.10.1186/1471-2105-5-170
20 sg:pub.10.1186/1475-4924-2-13
21 https://app.dimensions.ai/details/publication/pub.1076803196
22 https://app.dimensions.ai/details/publication/pub.1076956998
23 https://app.dimensions.ai/details/publication/pub.1082424111
24 https://app.dimensions.ai/details/publication/pub.1082424148
25 https://app.dimensions.ai/details/publication/pub.1082499337
26 https://app.dimensions.ai/details/publication/pub.1083353563
27 https://doi.org/10.1016/0092-8674(88)90153-5
28 https://doi.org/10.1073/pnas.0501620102
29 https://doi.org/10.1074/jbc.m005624200
30 https://doi.org/10.1091/mbc.11.12.4241
31 https://doi.org/10.1093/bioinformatics/15.7.563
32 https://doi.org/10.1093/bioinformatics/btg329
33 https://doi.org/10.1093/nar/21.16.3777
34 https://doi.org/10.1093/nar/24.22.4479
35 https://doi.org/10.1093/nar/28.8.1808
36 https://doi.org/10.1093/nar/gki791
37 https://doi.org/10.1101/gr.1327604
38 https://doi.org/10.1126/science.1075090
39 https://doi.org/10.1126/science.8346441
40 https://doi.org/10.1128/mcb.12.9.3834
41 https://doi.org/10.1128/mcb.14.3.2100
42 https://doi.org/10.1128/mcb.15.12.6854
43 https://doi.org/10.1128/mcb.17.11.6491
44 https://doi.org/10.1128/mcb.17.9.5044
45 https://doi.org/10.1128/mcb.21.11.3714-3724.2001
46 https://doi.org/10.1128/mcb.23.1.229-237.2003
47 schema:datePublished 2006-12
48 schema:datePublishedReg 2006-12-01
49 schema:description BACKGROUND: The regulatory map of a genome consists of the binding sites for proteins that determine the transcription of nearby genes. An initial regulatory map for S. cerevisiae was recently published using six motif discovery programs to analyze genome-wide chromatin immunoprecipitation data for 203 transcription factors. The programs were used to identify sequence motifs that were likely to correspond to the DNA-binding specificity of the immunoprecipitated proteins. We report improved versions of two conservation-based motif discovery algorithms, PhyloCon and Converge. Using these programs, we create a refined regulatory map for S. cerevisiae by reanalyzing the same chromatin immunoprecipitation data. RESULTS: Applying the same conservative criteria that were applied in the original study, we find that PhyloCon and Converge each separately discover more known specificities than the combination of all six programs in the previous study. Combining the results of PhyloCon and Converge, we discover significant sequence motifs for 36 transcription factors that were previously missed. The new set of motifs identifies 636 more regulatory interactions than the previous one. The new network contains 28% more regulatory interactions among transcription factors, evidence of greater cross-talk between regulators. CONCLUSION: Combining two complementary computational strategies for conservation-based motif discovery improves the ability to identify the specificity of transcriptional regulators from genome-wide chromatin immunoprecipitation data. The increased sensitivity of these methods significantly expands the map of yeast regulatory sites without the need to alter any of the thresholds for statistical significance. The new map of regulatory sites reveals a more elaborate and complex view of the yeast genetic regulatory network than was observed previously.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N915a80ecb53044cf910135ccf771faab
54 N980a22d0fcc34b7683f2aa02e62e0699
55 sg:journal.1023786
56 schema:name An improved map of conserved regulatory sites for Saccharomyces cerevisiae
57 schema:pagination 113
58 schema:productId N0b7f510d0320480798214864609a708c
59 N2ccd8a48b80f4dfea0167f1b59e73454
60 Nde259cf9a373452f89988c2f82ffc972
61 Nebea10f21e364fed8e0a2522d029eb5c
62 Nf795c59c285f43a5bef72df892ada68e
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007033335
64 https://doi.org/10.1186/1471-2105-7-113
65 schema:sdDatePublished 2019-04-11T09:33
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N5f51499cb3804168bcab6ca903475146
68 schema:url https://link.springer.com/10.1186%2F1471-2105-7-113
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0a30657f2e3b4f1ca01fd260cc8ff653 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Gene Expression Regulation, Fungal
74 rdf:type schema:DefinedTerm
75 N0b7f510d0320480798214864609a708c schema:name readcube_id
76 schema:value 2181196dede1b9916a904f10cca23689d584c0f27a1ecf9de6a84c82a0670c6e
77 rdf:type schema:PropertyValue
78 N13ef31cd124745648e64f50ff78d5665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Chromosome Mapping
80 rdf:type schema:DefinedTerm
81 N2ccd8a48b80f4dfea0167f1b59e73454 schema:name doi
82 schema:value 10.1186/1471-2105-7-113
83 rdf:type schema:PropertyValue
84 N2d4db573e6a84f86a1053ada4416d149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Transcription Factors
86 rdf:type schema:DefinedTerm
87 N2dd26575e5264e47a7a5d9682c80362e rdf:first sg:person.0701112251.99
88 rdf:rest rdf:nil
89 N3528bf6c275941448a8680860a6902d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Phylogeny
91 rdf:type schema:DefinedTerm
92 N412c1a9c572543bf859a90528bed8472 rdf:first sg:person.01205032551.19
93 rdf:rest Nb086b5003eb242a38e280b370096638d
94 N4393ac00bb604cefbc9751551671c78b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Transcriptional Activation
96 rdf:type schema:DefinedTerm
97 N5097ee91bed54caaa21839f1153dfdb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Saccharomyces cerevisiae
99 rdf:type schema:DefinedTerm
100 N5f51499cb3804168bcab6ca903475146 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N751f1d5bdd024837a738a195e8bf3da7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Conserved Sequence
104 rdf:type schema:DefinedTerm
105 N79c79203ca114d2cba26486762c333fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Sequence Analysis, DNA
107 rdf:type schema:DefinedTerm
108 N915a80ecb53044cf910135ccf771faab schema:volumeNumber 7
109 rdf:type schema:PublicationVolume
110 N980a22d0fcc34b7683f2aa02e62e0699 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 Na5563f6586364770aebe461c52ed51b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Algorithms
114 rdf:type schema:DefinedTerm
115 Nb086b5003eb242a38e280b370096638d rdf:first sg:person.0727137372.57
116 rdf:rest Nf8f32cdf3ccd436c9c738ac8e4aa7cc3
117 Nd7b45c443a7249d585e606b5f436ef5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Regulatory Elements, Transcriptional
119 rdf:type schema:DefinedTerm
120 Nde259cf9a373452f89988c2f82ffc972 schema:name pubmed_id
121 schema:value 16522208
122 rdf:type schema:PropertyValue
123 Nebea10f21e364fed8e0a2522d029eb5c schema:name nlm_unique_id
124 schema:value 100965194
125 rdf:type schema:PropertyValue
126 Nf23e62495fe8477d998b7ee6aaa696de rdf:first sg:person.01355314503.70
127 rdf:rest Nfa8495992afb4698b320e77573b42aed
128 Nf795c59c285f43a5bef72df892ada68e schema:name dimensions_id
129 schema:value pub.1007033335
130 rdf:type schema:PropertyValue
131 Nf8f32cdf3ccd436c9c738ac8e4aa7cc3 rdf:first sg:person.01041770560.90
132 rdf:rest Nf23e62495fe8477d998b7ee6aaa696de
133 Nfa8495992afb4698b320e77573b42aed rdf:first sg:person.01326321472.10
134 rdf:rest N2dd26575e5264e47a7a5d9682c80362e
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
139 schema:name Genetics
140 rdf:type schema:DefinedTerm
141 sg:grant.2528761 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-113
142 rdf:type schema:MonetaryGrant
143 sg:grant.2529142 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-113
144 rdf:type schema:MonetaryGrant
145 sg:grant.2684534 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-7-113
146 rdf:type schema:MonetaryGrant
147 sg:journal.1023786 schema:issn 1471-2105
148 schema:name BMC Bioinformatics
149 rdf:type schema:Periodical
150 sg:person.01041770560.90 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
151 schema:familyName Gordon
152 schema:givenName D Benjamin
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041770560.90
154 rdf:type schema:Person
155 sg:person.01205032551.19 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
156 schema:familyName MacIsaac
157 schema:givenName Kenzie D
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205032551.19
159 rdf:type schema:Person
160 sg:person.01326321472.10 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
161 schema:familyName Stormo
162 schema:givenName Gary D
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326321472.10
164 rdf:type schema:Person
165 sg:person.01355314503.70 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
166 schema:familyName Gifford
167 schema:givenName David K
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355314503.70
169 rdf:type schema:Person
170 sg:person.0701112251.99 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
171 schema:familyName Fraenkel
172 schema:givenName Ernest
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701112251.99
174 rdf:type schema:Person
175 sg:person.0727137372.57 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
176 schema:familyName Wang
177 schema:givenName Ting
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727137372.57
179 rdf:type schema:Person
180 sg:pub.10.1007/s10856-004-5735-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030271827
181 https://doi.org/10.1007/s10856-004-5735-3
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/4940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018995020
184 https://doi.org/10.1038/4940
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
187 https://doi.org/10.1038/nature01644
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature02800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006618657
190 https://doi.org/10.1038/nature02800
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nbt1053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030939237
193 https://doi.org/10.1038/nbt1053
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/1471-2105-5-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000329510
196 https://doi.org/10.1186/1471-2105-5-170
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/1475-4924-2-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029375403
199 https://doi.org/10.1186/1475-4924-2-13
200 rdf:type schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1076803196 schema:CreativeWork
202 https://app.dimensions.ai/details/publication/pub.1076956998 schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1082424111 schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1082424148 schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1082499337 schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1083353563 schema:CreativeWork
207 https://doi.org/10.1016/0092-8674(88)90153-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008942409
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.0501620102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005376177
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1074/jbc.m005624200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016276704
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1091/mbc.11.12.4241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048274369
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/bioinformatics/15.7.563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030639875
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/btg329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005050124
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/21.16.3777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030530457
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/24.22.4479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001372879
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/28.8.1808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032281737
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/nar/gki791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033517893
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1101/gr.1327604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046234411
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.8346441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062654769
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1128/mcb.12.9.3834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030940316
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1128/mcb.14.3.2100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026931711
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1128/mcb.15.12.6854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044627830
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1128/mcb.17.11.6491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053113036
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1128/mcb.17.9.5044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011399444
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1128/mcb.21.11.3714-3724.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014922102
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1128/mcb.23.1.229-237.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028334947
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
248 schema:name Biological Engineering Division, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
249 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., 02139, Cambridge, MA, USA
250 Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, MA, USA
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.422638.9 schema:alternateName Agilent Technologies (United States)
253 schema:name Agilent Technologies, 245 1st Street, 02142, Cambridge, MA, USA
254 Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, MA, USA
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
257 schema:name Department of Genetics, Washington University Medical School, 63110, St. Louis, MO, USA
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...