VANTED: A system for advanced data analysis and visualization in the context of biological networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Björn H Junker, Christian Klukas, Falk Schreiber

ABSTRACT

BACKGROUND: Recent advances with high-throughput methods in life-science research have increased the need for automatized data analysis and visual exploration techniques. Sophisticated bioinformatics tools are essential to deduct biologically meaningful interpretations from the large amount of experimental data, and help to understand biological processes. RESULTS: We present VANTED, a tool for the visualization and analysis of networks with related experimental data. Data from large-scale biochemical experiments is uploaded into the software via a Microsoft Excel-based form. Then it can be mapped on a network that is either drawn with the tool itself, downloaded from the KEGG Pathway database, or imported using standard network exchange formats. Transcript, enzyme, and metabolite data can be presented in the context of their underlying networks, e. g. metabolic pathways or classification hierarchies. Visualization and navigation methods support the visual exploration of the data-enriched networks. Statistical methods allow analysis and comparison of multiple data sets such as different developmental stages or genetically different lines. Correlation networks can be automatically generated from the data and substances can be clustered according to similar behavior over time. As examples, metabolite profiling and enzyme activity data sets have been visualized in different metabolic maps, correlation networks have been generated and similar time patterns detected. Some relationships between different metabolites were discovered which are in close accordance with the literature. CONCLUSION: VANTED greatly helps researchers in the analysis and interpretation of biochemical data, and thus is a useful tool for modern biological research. VANTED as a Java Web Start Application including a user guide and example data sets is available free of charge at http://vanted.ipk-gatersleben.de. More... »

PAGES

109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-7-109

DOI

http://dx.doi.org/10.1186/1471-2105-7-109

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038053078

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16519817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Graphics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics and Crop Plant Research", 
          "id": "https://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Junker", 
        "givenName": "Bj\u00f6rn H", 
        "id": "sg:person.01162135233.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162135233.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics and Crop Plant Research", 
          "id": "https://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klukas", 
        "givenName": "Christian", 
        "id": "sg:person.01230250433.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230250433.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics and Crop Plant Research", 
          "id": "https://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiber", 
        "givenName": "Falk", 
        "id": "sg:person.0712477053.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712477053.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cfg.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003948742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.arplant.54.031902.135014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004478469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006542957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/spe.4380211102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008993696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-3-r22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011398857", 
          "https://doi.org/10.1186/gb-2003-4-3-r22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014030322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015734752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.104.025973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017393841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0303415101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017440637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(00)01771-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019662824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11618058_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021098742", 
          "https://doi.org/10.1007/11618058_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11618058_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021098742", 
          "https://doi.org/10.1007/11618058_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5266(03)00042-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021230309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5266(03)00042-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021230309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2003.01981.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021660947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erh130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.105.060459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023916068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18638-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025651600", 
          "https://doi.org/10.1007/978-3-642-18638-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18638-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025651600", 
          "https://doi.org/10.1007/978-3-642-18638-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026191195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027416268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.13.1.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027776430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032149770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.1998.00190.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033915845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.105.060525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034581641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-024x(200009)30:11<1303::aid-spe341>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034753166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035947043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036497947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037201606", 
          "https://doi.org/10.1186/1471-2105-5-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037606624", 
          "https://doi.org/10.1186/1471-2105-4-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037606624", 
          "https://doi.org/10.1186/1471-2105-4-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0311472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037844363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0311472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037844363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039566005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_2.s219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040656706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-004-2525-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042328084", 
          "https://doi.org/10.1007/s11103-004-2525-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043828333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045090002", 
          "https://doi.org/10.1038/81137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045090002", 
          "https://doi.org/10.1038/81137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045214352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31843-9_52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046650287", 
          "https://doi.org/10.1007/978-3-540-31843-9_52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31843-9_52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046650287", 
          "https://doi.org/10.1007/978-3-540-31843-9_52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.226602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.7.996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049990391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erg074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050675633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.102.017236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051961219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.58325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1981.4308636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3871150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070468959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077069870", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Recent advances with high-throughput methods in life-science research have increased the need for automatized data analysis and visual exploration techniques. Sophisticated bioinformatics tools are essential to deduct biologically meaningful interpretations from the large amount of experimental data, and help to understand biological processes.\nRESULTS: We present VANTED, a tool for the visualization and analysis of networks with related experimental data. Data from large-scale biochemical experiments is uploaded into the software via a Microsoft Excel-based form. Then it can be mapped on a network that is either drawn with the tool itself, downloaded from the KEGG Pathway database, or imported using standard network exchange formats. Transcript, enzyme, and metabolite data can be presented in the context of their underlying networks, e. g. metabolic pathways or classification hierarchies. Visualization and navigation methods support the visual exploration of the data-enriched networks. Statistical methods allow analysis and comparison of multiple data sets such as different developmental stages or genetically different lines. Correlation networks can be automatically generated from the data and substances can be clustered according to similar behavior over time. As examples, metabolite profiling and enzyme activity data sets have been visualized in different metabolic maps, correlation networks have been generated and similar time patterns detected. Some relationships between different metabolites were discovered which are in close accordance with the literature.\nCONCLUSION: VANTED greatly helps researchers in the analysis and interpretation of biochemical data, and thus is a useful tool for modern biological research. VANTED as a Java Web Start Application including a user guide and example data sets is available free of charge at http://vanted.ipk-gatersleben.de.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-7-109", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "VANTED: A system for advanced data analysis and visualization in the context of biological networks", 
    "pagination": "109", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b54571576ecc4307b1bee78ba2114a113febd6bf3f9a29d3a355701bf9121bfd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16519817"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-7-109"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038053078"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-7-109", 
      "https://app.dimensions.ai/details/publication/pub.1038053078"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54307_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-7-109"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-109'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-109'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-109'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-7-109'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      83 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-7-109 schema:about N01150d2d43574180a1fa6102878d399e
2 N219130e64e1d4ff5ad44372c683bcc52
3 N32849ac4ec9f48fa884bea89e00d96db
4 N46ad29cc440d4c83abe7645413623bd0
5 N6533f2a3601943daaa8d525ca96ba133
6 N9dba02d139804893a8917aaeea3d2b1c
7 Nc285c136cf9c41599677ac72d177b0ef
8 Nea7c0cc8bf8d42e581e50546b5046c22
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N884a37ed319941f18284aea2bad09d5c
12 schema:citation sg:pub.10.1007/11618058_15
13 sg:pub.10.1007/978-3-540-31843-9_52
14 sg:pub.10.1007/978-3-642-18638-7_4
15 sg:pub.10.1007/s11103-004-2525-8
16 sg:pub.10.1038/81137
17 sg:pub.10.1186/1471-2105-4-56
18 sg:pub.10.1186/1471-2105-5-17
19 sg:pub.10.1186/gb-2003-4-3-r22
20 https://app.dimensions.ai/details/publication/pub.1077069870
21 https://doi.org/10.1002/1097-024x(200009)30:11<1303::aid-spe341>3.0.co;2-3
22 https://doi.org/10.1002/cfg.285
23 https://doi.org/10.1002/spe.4380211102
24 https://doi.org/10.1016/s0014-5793(00)01771-3
25 https://doi.org/10.1016/s1369-5266(03)00042-6
26 https://doi.org/10.1042/bst0311472
27 https://doi.org/10.1046/j.1365-313x.1998.00190.x
28 https://doi.org/10.1046/j.1365-313x.2003.01981.x
29 https://doi.org/10.1073/pnas.0303415101
30 https://doi.org/10.1093/bioinformatics/18.7.996
31 https://doi.org/10.1093/bioinformatics/18.suppl_2.s219
32 https://doi.org/10.1093/bioinformatics/btg020
33 https://doi.org/10.1093/bioinformatics/bth096
34 https://doi.org/10.1093/bioinformatics/bth278
35 https://doi.org/10.1093/bioinformatics/bti153
36 https://doi.org/10.1093/jxb/erg074
37 https://doi.org/10.1093/jxb/erh130
38 https://doi.org/10.1093/nar/28.1.27
39 https://doi.org/10.1093/nar/28.1.304
40 https://doi.org/10.1093/nar/30.1.402
41 https://doi.org/10.1093/nar/gkh100
42 https://doi.org/10.1093/nar/gki391
43 https://doi.org/10.1093/nar/gki566
44 https://doi.org/10.1101/gr.1239303
45 https://doi.org/10.1101/gr.226602
46 https://doi.org/10.1104/pp.102.017236
47 https://doi.org/10.1104/pp.105.060459
48 https://doi.org/10.1104/pp.105.060525
49 https://doi.org/10.1105/tpc.104.025973
50 https://doi.org/10.1105/tpc.13.1.11
51 https://doi.org/10.1109/5.58325
52 https://doi.org/10.1109/tsmc.1981.4308636
53 https://doi.org/10.1126/science.278.5338.680
54 https://doi.org/10.1146/annurev.arplant.54.031902.135014
55 https://doi.org/10.1371/journal.pbio.0020009
56 https://doi.org/10.1371/journal.pbio.0020085
57 https://doi.org/10.2307/3871150
58 schema:datePublished 2006-12
59 schema:datePublishedReg 2006-12-01
60 schema:description BACKGROUND: Recent advances with high-throughput methods in life-science research have increased the need for automatized data analysis and visual exploration techniques. Sophisticated bioinformatics tools are essential to deduct biologically meaningful interpretations from the large amount of experimental data, and help to understand biological processes. RESULTS: We present VANTED, a tool for the visualization and analysis of networks with related experimental data. Data from large-scale biochemical experiments is uploaded into the software via a Microsoft Excel-based form. Then it can be mapped on a network that is either drawn with the tool itself, downloaded from the KEGG Pathway database, or imported using standard network exchange formats. Transcript, enzyme, and metabolite data can be presented in the context of their underlying networks, e. g. metabolic pathways or classification hierarchies. Visualization and navigation methods support the visual exploration of the data-enriched networks. Statistical methods allow analysis and comparison of multiple data sets such as different developmental stages or genetically different lines. Correlation networks can be automatically generated from the data and substances can be clustered according to similar behavior over time. As examples, metabolite profiling and enzyme activity data sets have been visualized in different metabolic maps, correlation networks have been generated and similar time patterns detected. Some relationships between different metabolites were discovered which are in close accordance with the literature. CONCLUSION: VANTED greatly helps researchers in the analysis and interpretation of biochemical data, and thus is a useful tool for modern biological research. VANTED as a Java Web Start Application including a user guide and example data sets is available free of charge at http://vanted.ipk-gatersleben.de.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N89a36ea483a54ef29cd83840e28ab3cd
65 Ne20ee61a21394eeea5e47161b4387b08
66 sg:journal.1023786
67 schema:name VANTED: A system for advanced data analysis and visualization in the context of biological networks
68 schema:pagination 109
69 schema:productId N09e02bd28e2f4402a44bd6b3cb56537b
70 N3e44f58ec9b241b48e048ac50a4d91f1
71 N6ab699b3a6d7498eb05d033bd27387e7
72 Na213fbf1139c40f4b9961db6cfde5d07
73 Naf8ca29292764feea79735ecbaaacd2b
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038053078
75 https://doi.org/10.1186/1471-2105-7-109
76 schema:sdDatePublished 2019-04-11T10:17
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N07d690104b32456abe00cd31a55488ff
79 schema:url https://link.springer.com/10.1186%2F1471-2105-7-109
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N01150d2d43574180a1fa6102878d399e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name User-Computer Interface
85 rdf:type schema:DefinedTerm
86 N07d690104b32456abe00cd31a55488ff schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N09e02bd28e2f4402a44bd6b3cb56537b schema:name doi
89 schema:value 10.1186/1471-2105-7-109
90 rdf:type schema:PropertyValue
91 N219130e64e1d4ff5ad44372c683bcc52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Models, Biological
93 rdf:type schema:DefinedTerm
94 N32849ac4ec9f48fa884bea89e00d96db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Signal Transduction
96 rdf:type schema:DefinedTerm
97 N3e44f58ec9b241b48e048ac50a4d91f1 schema:name dimensions_id
98 schema:value pub.1038053078
99 rdf:type schema:PropertyValue
100 N46ad29cc440d4c83abe7645413623bd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Algorithms
102 rdf:type schema:DefinedTerm
103 N6533f2a3601943daaa8d525ca96ba133 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Computer Simulation
105 rdf:type schema:DefinedTerm
106 N6ab699b3a6d7498eb05d033bd27387e7 schema:name readcube_id
107 schema:value b54571576ecc4307b1bee78ba2114a113febd6bf3f9a29d3a355701bf9121bfd
108 rdf:type schema:PropertyValue
109 N85d4150c14a94012b7431d88fb398440 rdf:first sg:person.01230250433.84
110 rdf:rest Nc78b1150a4fd4abc86979b0ce8872024
111 N884a37ed319941f18284aea2bad09d5c rdf:first sg:person.01162135233.20
112 rdf:rest N85d4150c14a94012b7431d88fb398440
113 N89a36ea483a54ef29cd83840e28ab3cd schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 N9dba02d139804893a8917aaeea3d2b1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Software
117 rdf:type schema:DefinedTerm
118 Na213fbf1139c40f4b9961db6cfde5d07 schema:name pubmed_id
119 schema:value 16519817
120 rdf:type schema:PropertyValue
121 Naf8ca29292764feea79735ecbaaacd2b schema:name nlm_unique_id
122 schema:value 100965194
123 rdf:type schema:PropertyValue
124 Nc285c136cf9c41599677ac72d177b0ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Computer Graphics
126 rdf:type schema:DefinedTerm
127 Nc78b1150a4fd4abc86979b0ce8872024 rdf:first sg:person.0712477053.24
128 rdf:rest rdf:nil
129 Ne20ee61a21394eeea5e47161b4387b08 schema:volumeNumber 7
130 rdf:type schema:PublicationVolume
131 Nea7c0cc8bf8d42e581e50546b5046c22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Transcription Factors
133 rdf:type schema:DefinedTerm
134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information and Computing Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
138 schema:name Artificial Intelligence and Image Processing
139 rdf:type schema:DefinedTerm
140 sg:journal.1023786 schema:issn 1471-2105
141 schema:name BMC Bioinformatics
142 rdf:type schema:Periodical
143 sg:person.01162135233.20 schema:affiliation https://www.grid.ac/institutes/grid.418934.3
144 schema:familyName Junker
145 schema:givenName Björn H
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162135233.20
147 rdf:type schema:Person
148 sg:person.01230250433.84 schema:affiliation https://www.grid.ac/institutes/grid.418934.3
149 schema:familyName Klukas
150 schema:givenName Christian
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230250433.84
152 rdf:type schema:Person
153 sg:person.0712477053.24 schema:affiliation https://www.grid.ac/institutes/grid.418934.3
154 schema:familyName Schreiber
155 schema:givenName Falk
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712477053.24
157 rdf:type schema:Person
158 sg:pub.10.1007/11618058_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021098742
159 https://doi.org/10.1007/11618058_15
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-3-540-31843-9_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046650287
162 https://doi.org/10.1007/978-3-540-31843-9_52
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/978-3-642-18638-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025651600
165 https://doi.org/10.1007/978-3-642-18638-7_4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11103-004-2525-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042328084
168 https://doi.org/10.1007/s11103-004-2525-8
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/81137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045090002
171 https://doi.org/10.1038/81137
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2105-4-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037606624
174 https://doi.org/10.1186/1471-2105-4-56
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1471-2105-5-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037201606
177 https://doi.org/10.1186/1471-2105-5-17
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/gb-2003-4-3-r22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011398857
180 https://doi.org/10.1186/gb-2003-4-3-r22
181 rdf:type schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1077069870 schema:CreativeWork
183 https://doi.org/10.1002/1097-024x(200009)30:11<1303::aid-spe341>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034753166
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/cfg.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003948742
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/spe.4380211102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008993696
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0014-5793(00)01771-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019662824
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s1369-5266(03)00042-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021230309
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1042/bst0311472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037844363
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1046/j.1365-313x.1998.00190.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033915845
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1046/j.1365-313x.2003.01981.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021660947
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1073/pnas.0303415101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017440637
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/18.7.996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049990391
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/18.suppl_2.s219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656706
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/btg020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045214352
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/bth096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039566005
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/bth278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032149770
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/bti153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035947043
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/jxb/erg074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050675633
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/jxb/erh130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678310
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/28.1.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015734752
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/30.1.402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026191195
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gkh100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006542957
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/nar/gki391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014030322
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/nar/gki566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043828333
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1101/gr.226602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269588
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1104/pp.102.017236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051961219
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1104/pp.105.060459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023916068
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1104/pp.105.060525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034581641
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1105/tpc.104.025973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017393841
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1105/tpc.13.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027776430
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/5.58325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179721
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1109/tsmc.1981.4308636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793295
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1146/annurev.arplant.54.031902.135014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004478469
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1371/journal.pbio.0020009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027416268
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1371/journal.pbio.0020085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036497947
254 rdf:type schema:CreativeWork
255 https://doi.org/10.2307/3871150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070468959
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.418934.3 schema:alternateName Institute of Plant Genetics and Crop Plant Research
258 schema:name Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Germany
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...