ProMiner: rule-based protein and gene entity recognition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-05

AUTHORS

Daniel Hanisch, Katrin Fundel, Heinz-Theodor Mevissen, Ralf Zimmer, Juliane Fluck

ABSTRACT

BACKGROUND: Identification of gene and protein names in biomedical text is a challenging task as the corresponding nomenclature has evolved over time. This has led to multiple synonyms for individual genes and proteins, as well as names that may be ambiguous with other gene names or with general English words. The Gene List Task of the BioCreAtIvE challenge evaluation enables comparison of systems addressing the problem of protein and gene name identification on common benchmark data. METHODS: The ProMiner system uses a pre-processed synonym dictionary to identify potential name occurrences in the biomedical text and associate protein and gene database identifiers with the detected matches. It follows a rule-based approach and its search algorithm is geared towards recognition of multi-word names. To account for the large number of ambiguous synonyms in the considered organisms, the system has been extended to use specific variants of the detection procedure for highly ambiguous and case-sensitive synonyms. Based on all detected synonyms for one abstract, the most plausible database identifiers are associated with the text. Organism specificity is addressed by a simple procedure based on additionally detected organism names in an abstract. RESULTS: The extended ProMiner system has been applied to the test cases of the BioCreAtIvE competition with highly encouraging results. In blind predictions, the system achieved an F-measure of approximately 0.8 for the organisms mouse and fly and about 0.9 for the organism yeast. More... »

PAGES

s14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-6-s1-s14

DOI

http://dx.doi.org/10.1186/1471-2105-6-s1-s14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036940874

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15960826


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recognition (Psychology)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sanofi (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.420214.1", 
          "name": [
            "Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754, Sankt Augustin, Germany", 
            "Aventis Pharma Deutschland, Industriepark Hoechst G879, 65926, Frankfurt am Main, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanisch", 
        "givenName": "Daniel", 
        "id": "sg:person.01045616422.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045616422.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Institute for Informatics, Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Amalienstrasse 17, 80333, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fundel", 
        "givenName": "Katrin", 
        "id": "sg:person.01075372563.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075372563.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754, Sankt Augustin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mevissen", 
        "givenName": "Heinz-Theodor", 
        "id": "sg:person.01341231552.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341231552.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Institute for Informatics, Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Amalienstrasse 17, 80333, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zimmer", 
        "givenName": "Ralf", 
        "id": "sg:person.01275774722.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275774722.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754, Sankt Augustin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fluck", 
        "givenName": "Juliane", 
        "id": "sg:person.01000564525.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000564525.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng0501-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005323022", 
          "https://doi.org/10.1038/ng0501-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0501-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005323022", 
          "https://doi.org/10.1038/ng0501-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s1-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005869659", 
          "https://doi.org/10.1186/1471-2105-6-s1-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s1-s12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019828370", 
          "https://doi.org/10.1186/1471-2105-6-s1-s12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s1-s15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021461327", 
          "https://doi.org/10.1186/1471-2105-6-s1-s15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/990820.990850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024654499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb046814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s1-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037467954", 
          "https://doi.org/10.1186/1471-2105-6-s1-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s1-s13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039857093", 
          "https://doi.org/10.1186/1471-2105-6-s1-s13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(00)00431-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047159003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s1-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048957855", 
          "https://doi.org/10.1186/1471-2105-6-s1-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s1-s11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050375602", 
          "https://doi.org/10.1186/1471-2105-6-s1-s11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m1139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051542807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074726134", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075243202", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075243206", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083303257", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1118958.1118963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099201643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1118958.1118963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099201643"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-05", 
    "datePublishedReg": "2005-05-01", 
    "description": "BACKGROUND: Identification of gene and protein names in biomedical text is a challenging task as the corresponding nomenclature has evolved over time. This has led to multiple synonyms for individual genes and proteins, as well as names that may be ambiguous with other gene names or with general English words. The Gene List Task of the BioCreAtIvE challenge evaluation enables comparison of systems addressing the problem of protein and gene name identification on common benchmark data.\nMETHODS: The ProMiner system uses a pre-processed synonym dictionary to identify potential name occurrences in the biomedical text and associate protein and gene database identifiers with the detected matches. It follows a rule-based approach and its search algorithm is geared towards recognition of multi-word names. To account for the large number of ambiguous synonyms in the considered organisms, the system has been extended to use specific variants of the detection procedure for highly ambiguous and case-sensitive synonyms. Based on all detected synonyms for one abstract, the most plausible database identifiers are associated with the text. Organism specificity is addressed by a simple procedure based on additionally detected organism names in an abstract.\nRESULTS: The extended ProMiner system has been applied to the test cases of the BioCreAtIvE competition with highly encouraging results. In blind predictions, the system achieved an F-measure of approximately 0.8 for the organisms mouse and fly and about 0.9 for the organism yeast.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-6-s1-s14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "ProMiner: rule-based protein and gene entity recognition", 
    "pagination": "s14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aff9146797d26e28565c6bd46daef12c8f7ae93cfba01f9cdd7a4db96b08cebd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15960826"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-6-s1-s14"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036940874"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-6-s1-s14", 
      "https://app.dimensions.ai/details/publication/pub.1036940874"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-6-S1-S14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-s1-s14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-s1-s14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-s1-s14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-s1-s14'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      52 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-6-s1-s14 schema:about N203136f6c32e4349883399341b39a39a
2 N6a969a901a604b4280df715ba9b99707
3 N8bfcdde6d7e84c1cabc1bc725bd18a07
4 Nb7902d7690bf44ac96c6a2ef76d92aab
5 Ne365dd8a8c684892ace60ff9d71e4dc7
6 Nf0ba82c9f4c24884a392bad77b1e6a31
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author Nf70ff17740f248c5b022cea3942d955f
10 schema:citation sg:pub.10.1038/ng0501-21
11 sg:pub.10.1186/1471-2105-6-s1-s10
12 sg:pub.10.1186/1471-2105-6-s1-s11
13 sg:pub.10.1186/1471-2105-6-s1-s12
14 sg:pub.10.1186/1471-2105-6-s1-s13
15 sg:pub.10.1186/1471-2105-6-s1-s15
16 sg:pub.10.1186/1471-2105-6-s1-s2
17 sg:pub.10.1186/1471-2105-6-s1-s3
18 https://app.dimensions.ai/details/publication/pub.1074726134
19 https://app.dimensions.ai/details/publication/pub.1075243202
20 https://app.dimensions.ai/details/publication/pub.1075243206
21 https://app.dimensions.ai/details/publication/pub.1083303257
22 https://doi.org/10.1016/s0378-1119(00)00431-5
23 https://doi.org/10.1108/eb046814
24 https://doi.org/10.1197/jamia.m1139
25 https://doi.org/10.3115/1118958.1118963
26 https://doi.org/10.3115/990820.990850
27 schema:datePublished 2005-05
28 schema:datePublishedReg 2005-05-01
29 schema:description BACKGROUND: Identification of gene and protein names in biomedical text is a challenging task as the corresponding nomenclature has evolved over time. This has led to multiple synonyms for individual genes and proteins, as well as names that may be ambiguous with other gene names or with general English words. The Gene List Task of the BioCreAtIvE challenge evaluation enables comparison of systems addressing the problem of protein and gene name identification on common benchmark data. METHODS: The ProMiner system uses a pre-processed synonym dictionary to identify potential name occurrences in the biomedical text and associate protein and gene database identifiers with the detected matches. It follows a rule-based approach and its search algorithm is geared towards recognition of multi-word names. To account for the large number of ambiguous synonyms in the considered organisms, the system has been extended to use specific variants of the detection procedure for highly ambiguous and case-sensitive synonyms. Based on all detected synonyms for one abstract, the most plausible database identifiers are associated with the text. Organism specificity is addressed by a simple procedure based on additionally detected organism names in an abstract. RESULTS: The extended ProMiner system has been applied to the test cases of the BioCreAtIvE competition with highly encouraging results. In blind predictions, the system achieved an F-measure of approximately 0.8 for the organisms mouse and fly and about 0.9 for the organism yeast.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N026ec5d12995445b8830948c25855fd2
34 Nb14b1a4bff274480bba39a94ded1c9fb
35 sg:journal.1023786
36 schema:name ProMiner: rule-based protein and gene entity recognition
37 schema:pagination s14
38 schema:productId N05864a292ce54b4cbbf1929d8d81e16b
39 N1d0dcafb442d4b6b8a4be637a477f726
40 N381936766d104c739d173e339f1ccd70
41 N681a01a228a54f66bd681965ef62c91e
42 Nf1936adadcff415f9e9946e1cba5dfa3
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036940874
44 https://doi.org/10.1186/1471-2105-6-s1-s14
45 schema:sdDatePublished 2019-04-11T00:23
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N3a232234edbf42c19931ea74cf503553
48 schema:url http://link.springer.com/10.1186/1471-2105-6-S1-S14
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N026ec5d12995445b8830948c25855fd2 schema:issueNumber Suppl 1
53 rdf:type schema:PublicationIssue
54 N05864a292ce54b4cbbf1929d8d81e16b schema:name dimensions_id
55 schema:value pub.1036940874
56 rdf:type schema:PropertyValue
57 N1d0dcafb442d4b6b8a4be637a477f726 schema:name pubmed_id
58 schema:value 15960826
59 rdf:type schema:PropertyValue
60 N203136f6c32e4349883399341b39a39a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Software
62 rdf:type schema:DefinedTerm
63 N375d54756bc44d878717e0859ccc858f rdf:first sg:person.01075372563.94
64 rdf:rest N7aeaf617690049c8bece77679ad41279
65 N381936766d104c739d173e339f1ccd70 schema:name nlm_unique_id
66 schema:value 100965194
67 rdf:type schema:PropertyValue
68 N3a232234edbf42c19931ea74cf503553 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N681a01a228a54f66bd681965ef62c91e schema:name readcube_id
71 schema:value aff9146797d26e28565c6bd46daef12c8f7ae93cfba01f9cdd7a4db96b08cebd
72 rdf:type schema:PropertyValue
73 N6a969a901a604b4280df715ba9b99707 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Proteins
75 rdf:type schema:DefinedTerm
76 N784acf296f6b46429d99106b64591ed0 rdf:first sg:person.01275774722.43
77 rdf:rest N7da497eef1ed40b8b3dc2ca708a233c4
78 N7aeaf617690049c8bece77679ad41279 rdf:first sg:person.01341231552.25
79 rdf:rest N784acf296f6b46429d99106b64591ed0
80 N7da497eef1ed40b8b3dc2ca708a233c4 rdf:first sg:person.01000564525.13
81 rdf:rest rdf:nil
82 N8bfcdde6d7e84c1cabc1bc725bd18a07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Computational Biology
84 rdf:type schema:DefinedTerm
85 N8fd57671f0d04c418c4a64cd804913e3 schema:name Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754, Sankt Augustin, Germany
86 rdf:type schema:Organization
87 Nb14b1a4bff274480bba39a94ded1c9fb schema:volumeNumber 6
88 rdf:type schema:PublicationVolume
89 Nb7902d7690bf44ac96c6a2ef76d92aab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Pattern Recognition, Automated
91 rdf:type schema:DefinedTerm
92 Ne365dd8a8c684892ace60ff9d71e4dc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Genes
94 rdf:type schema:DefinedTerm
95 Nf0ba82c9f4c24884a392bad77b1e6a31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Recognition (Psychology)
97 rdf:type schema:DefinedTerm
98 Nf1936adadcff415f9e9946e1cba5dfa3 schema:name doi
99 schema:value 10.1186/1471-2105-6-s1-s14
100 rdf:type schema:PropertyValue
101 Nf70ff17740f248c5b022cea3942d955f rdf:first sg:person.01045616422.14
102 rdf:rest N375d54756bc44d878717e0859ccc858f
103 Nfa892df624454015b13fba09792aafb1 schema:name Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754, Sankt Augustin, Germany
104 rdf:type schema:Organization
105 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
106 schema:name Biological Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
109 schema:name Genetics
110 rdf:type schema:DefinedTerm
111 sg:journal.1023786 schema:issn 1471-2105
112 schema:name BMC Bioinformatics
113 rdf:type schema:Periodical
114 sg:person.01000564525.13 schema:affiliation N8fd57671f0d04c418c4a64cd804913e3
115 schema:familyName Fluck
116 schema:givenName Juliane
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000564525.13
118 rdf:type schema:Person
119 sg:person.01045616422.14 schema:affiliation https://www.grid.ac/institutes/grid.420214.1
120 schema:familyName Hanisch
121 schema:givenName Daniel
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045616422.14
123 rdf:type schema:Person
124 sg:person.01075372563.94 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
125 schema:familyName Fundel
126 schema:givenName Katrin
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075372563.94
128 rdf:type schema:Person
129 sg:person.01275774722.43 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
130 schema:familyName Zimmer
131 schema:givenName Ralf
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275774722.43
133 rdf:type schema:Person
134 sg:person.01341231552.25 schema:affiliation Nfa892df624454015b13fba09792aafb1
135 schema:familyName Mevissen
136 schema:givenName Heinz-Theodor
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341231552.25
138 rdf:type schema:Person
139 sg:pub.10.1038/ng0501-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005323022
140 https://doi.org/10.1038/ng0501-21
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1471-2105-6-s1-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037467954
143 https://doi.org/10.1186/1471-2105-6-s1-s10
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1471-2105-6-s1-s11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050375602
146 https://doi.org/10.1186/1471-2105-6-s1-s11
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/1471-2105-6-s1-s12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019828370
149 https://doi.org/10.1186/1471-2105-6-s1-s12
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/1471-2105-6-s1-s13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039857093
152 https://doi.org/10.1186/1471-2105-6-s1-s13
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-6-s1-s15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021461327
155 https://doi.org/10.1186/1471-2105-6-s1-s15
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1471-2105-6-s1-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048957855
158 https://doi.org/10.1186/1471-2105-6-s1-s2
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2105-6-s1-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005869659
161 https://doi.org/10.1186/1471-2105-6-s1-s3
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1074726134 schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1075243202 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1075243206 schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1083303257 schema:CreativeWork
167 https://doi.org/10.1016/s0378-1119(00)00431-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047159003
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1108/eb046814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275209
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1197/jamia.m1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051542807
172 rdf:type schema:CreativeWork
173 https://doi.org/10.3115/1118958.1118963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099201643
174 rdf:type schema:CreativeWork
175 https://doi.org/10.3115/990820.990850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024654499
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.420214.1 schema:alternateName Sanofi (Germany)
178 schema:name Aventis Pharma Deutschland, Industriepark Hoechst G879, 65926, Frankfurt am Main, Germany
179 Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754, Sankt Augustin, Germany
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
182 schema:name Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstrasse 17, 80333, München, Germany
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...